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ABSTRACT
Stellar magnetic activity induces both distortions and Doppler-shifts in the absorption line profiles of Sun-like stars. Those effects
produce apparent radial velocity (RV) signals which greatly hamper the search for potentially habitable, Earth-like planets. In this
work, we investigate these distortions in the Sun using cross-correlation functions (CCFs), derived from intensive monitoring
with the high-precision spectrograph HARPS-N. We show that the RV signal arising from line-shape variations on time-scales
associated with the Sun’s rotation and activity cycle can be robustly extracted from the data, reducing the RV dispersion by half.
Once these have been corrected, activity-induced Doppler-shifts remain, that are modulated at the solar rotation period, and that
are most effectively modelled in the time domain, using Gaussian Processes (GPs). Planet signatures are still best retrieved with
multi-dimensonal GPs, when activity is jointly modelled from the raw RVs and indicators of the line width or of the Ca II H
& K emission. After GP modelling, the residual RVs exhibit a dispersion of 0.6-0.8 m s−1, likely to be dominated by signals
induced by super-granulation. Finally, we find that the statistical properties of the RVs evolve significantly over time, and that
this evolution is primarily driven by sunspots, which control the smoothness of the signal. Such evolution, which reduces the
sensitivity to long-period planet signatures, is no longer seen in the activity-induced Doppler-shifts, which is promising for long
term RV monitoring surveys such as the Terra Hunting Experiment or the PLATO follow-up campaign.
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1 INTRODUCTION

Doppler spectroscopy is one of the bedrocks of past, present and
future exoplanetary science. As of 2024, it remains the preferred
technique for confirming transiting planet candidates and the most
prolific method for detecting non-transiting planets. It provides one
of the most fundamental parameters of an exoplanet, its mass, cru-
cial to constrain its inner composition (Mordasini et al. 2012) and to
characterise its atmosphere (Batalha et al. 2019). Since the detection
of 51 Pegasi b by Mayor & Queloz (1995), the radial velocity (RV)
accuracy of optical high-resolution échelle spectrographs has dramat-
ically increased, to the point where planets with RV semi-amplitudes
below 1 m s−1 can be reliably detected (e.g. Faria et al. 2022; John
et al. 2023). New-generation spectrographs like ESPRESSO (Pepe
et al. 2021), EXPRES (Jurgenson et al. 2016), HARPS-3 (Thomp-
son et al. 2016), NEID (Schwab et al. 2018) and KPF (Gibson et al.

★ E-mail: baptiste.klein@physics.ox.ac.uk

2016) have been designed to provide RVs with sub 0.3-m s−1 preci-
sion, suggesting that a detection of an Earth-like planet around a Sun
analog may be possible in the coming decade.

The intrinsic variability of stars is currently the main limitation
to the detection of low-mass and long-period planets with Doppler
spectroscopy (see Fischer et al. 2016; Crass et al. 2021; Meunier
2021). Various processes related to photospheric flows (e.g. gran-
ulation, super-granulation, meridional circulation; Dumusque et al.
2011; Meunier et al. 2015; Cegla et al. 2018; Meunier & Lagrange
2019, 2020) and magnetic activity (e.g., active regions, flares, mag-
netic cycles; Saar & Donahue 1997; Desort et al. 2007; Meunier
et al. 2010; Lovis et al. 2011; Gomes da Silva et al. 2012) distort
stellar line profiles, giving rise to RV signals that hamper the search
for planet signatures. The accurate modelling of these signals has
become an extremely active area of research, with promising state-
of-the-art methods currently under investigation (see Zhao et al. 2022,
for a review). The mathematically tractable and flexible framework
of Gaussian processes (Aigrain & Foreman-Mackey 2022) is now
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2 B. Klein et al.

widely used to model the signals induced by stellar activity on the
RVs and other activity indicators (e.g. Haywood et al. 2014; Raj-
paul et al. 2015; Delisle et al. 2022; Barragán et al. 2022b). On the
other hand, more and more innovative methods aim to correct line
distortions directly from the cross-correlation functions (e.g. Collier
Cameron et al. 2021; Klein et al. 2022; de Beurs et al. 2022) or from
the spectra (e.g. Jones et al. 2017; Dumusque 2018; Rajpaul et al.
2020; Lienhard et al. 2022; Cretignier et al. 2022). Yet, none of the
methods is currently able to filter stellar activity RV signals signifi-
cantly below the symbolic barrier of ∼1 m s−1 (after averaging over
signals induced by P-mode oscillations and granulation), and remain
poorly sensitive to low-amplitude (≲0.5 m s−1) long-period (≳100 d)
planet signals.

The Sun is our best laboratory to better understand stellar activity
signals in high-resolution spectra. It is the only star whose surface
can be resolved at high resolution and for which planet-induced RV
variations can be integrally removed. Since 2015, the Sun has been
intensively monitored with the High Accuracy Radial-velocity Planet
Searcher in the Northern hemisphere (HARPS-N; Cosentino et al.
2012), making it possible to investigate the full contributions of active
regions on high-resolution spectra (Milbourne et al. 2019; Thompson
et al. 2020; Haywood et al. 2022; Lienhard et al. 2023). These high-
cadence high-precision solar spectra are ideally suited to assess the
ability of a given method to filter stellar variability (Dumusque et al.
2021, Dumusque et al. in prep.). Additionally, continuous monitoring
of the solar surface with, for example, the Helioseismic and Magnetic
Imager (HMI) instrument onboard the Solar Dynamics Observatory
(SDO; Pesnell et al. 2012) makes it possible to better understand
the physical processes driving the observed disc-integrated RVs (e.g.
Milbourne et al. 2019; Haywood et al. 2022, Rescigno et al., submit-
ted).

In this study, we investigate how the HARPS-N solar activity RV
signals can be modelled using information in both wavelength and
time domains. In Sec. 2, we present our framework to separate a time
series of cross-correlation functions (CCFs) into two components
whose temporal variations are caused either by pure Doppler shifts
or by shape-distortions. After describing the HARPS-N solar data
set in Sec. 3, we investigate, in Sec. 4, the effects of filtering the
shape-driven distortions on the solar RVs, and assess the planet
detectability in the activity-filtered RVs through a large number of
planet injection-recovery tests. In Sec. 5, we couple this framework
with Gaussian processes and, notably, study the effect of combining
newly-extracted shape-driven activity indicators with the HARPS-
N solar RVs in a multi-dimensional Gaussian process framework.
Finally, in Sec. 6, we discuss the implications of our results in terms
of activity modelling and planet search in the light of forthcoming
long-term missions.

2 METHOD

Our approach builds on the Doppler-constrained principal component
analysis (PCA) framework of Jones et al. (2017) and on the SCALPELS
formalism introduced by Collier Cameron et al. (2021), borrowing
elements from both to separate, as simply as possible, the components
of the RV variations that can be explained by a pure Doppler shift
from the rest. Using the same designations as Collier Cameron et al.
(2021), we refer to these two components as the shift- and shape-
driven velocities, respectively.

2.1 Framework

We start from CCFs produced by, for example, the HARPS-N data re-
duction software (see Sec. 3.1). We consider a time series of 𝑛 CCFs
spanning 𝑚 velocity bins 𝒗 = (𝑣1,...,𝑣𝑚) and the associated RV time-
series vobs (typically taken from the reduction pipeline). Our frame-
work requires the computation of a non-noisy and activity-low refer-
ence CCF, CR, obtained by computing the inverse-variance-weighted
mean of all the CCFs in the stellar rest frame1. We use the simple an-
alytic framework of Jones et al. (2017) to decompose the time series
of reference-subtracted CCFs, C, into a pure Doppler component,
CD, and residuals, CS, whose variations are driven by distortions in
the profile shape. Assuming that the Doppler shifts are small com-
pared to the line width, we approximate the Doppler component by
the first-order term of the Taylor expansion of C with respect to the
CCF velocity bins, 𝒗 (see Bouchy et al. 2001), matching to the spec-
trum’s resolution. Therefore, noting D = [𝑪R

′ (𝑣1) , ...,𝑪R
′ (𝑣𝑚)]⊺ ,

the first derivative of the reference CCF with respect to the velocity
bins, we have

CD = C · 𝑫𝑫⊺

𝑫⊺𝑫
CS = C − CD. (1)

The time series of residuals, CS, contains all the shape distortions of
the input CCFs, but are, in principle, insensitive to Doppler shifts.
Following the method introduced by Collier Cameron et al. (2021),
we use singular-value decomposition (SVD) to build a set of 𝑘 in-
dependent vectors, {𝑼1, ...,𝑼𝒌 }, from CS. Each of these vectors is
a time series of 𝑛 points associated with a score that scales with its
contribution to the variance of CS. In what follows, the basis vectors
are sorted by decreasing score value, so that 𝑼1 and 𝑼𝒌 contribute
the most and the least to the variance of CS, respectively.

Finally, we project our reference-subtracted CCFs C onto the basis
U = (𝑼1, ...,𝑼𝒌 ), where each column 𝑖 is equal to vector 𝑼𝒊 . Using
the same notations as Collier Cameron et al. (2021), we call C∥ the
projection of C on U, such that

C∥ = U · U⊺ · C. (2)

We extract a RV time-series, v∥ (called shape-driven RVs), by fitting
a Gaussian function to each CCF of C∥ + CR. Finally, we build a
Doppler-driven (hereafter called shift-driven) RV time-series, v⊥, by
subtracting v∥ from the initial RV time-series vobs.

The number 𝑘 of principal components used to build U must be
chosen with caution. Basis vectors marginally contributing to the
variance of the input CCF time-series are primarily composed of
white noise. Thus, including them in the projection (Eq. 2) will in-
crease the dispersion of the input RVs and interfere with potential
planetary signals. In practice, we adapted the method described in the
Section 3 of Klein et al. (2024) to choose the number of components
used in the projection. We independently generate about 10 matrices,
matching CS in shape, but containing only white noise, drawn from
the formal uncertainties on the CCF. We then apply SVD to each of
these matrices and use the highest eigenvalue Smax of all matrices as a
proxy for noise-dominated components. When we apply SVD to CS,

1 One alternative could be to compute CR by averaging just a subset of CCFs,
around the activity minimum of the star. However, we caution that robustly
identifying activity minimums can be challenging in some cases, and that
stars still exhibit signs of activity during the cycle minimum, as shown in
Sec. 5.2. In practice, we find that the computation of CR marginally impacts
the results.

MNRAS 000, 1–19 (2024)



Eight-year study of solar activity 3

Table 1. Description of the parameters used to generate time series of CCFs
with SOAP2. In each case, we give the number of spots (Nspot) and faculae
(Nfac), as well as their corresponding stellar rotational phase 𝜙r and latitudes
(Lat). The size of the active regions are set to 0.18% (faculae) and 0.1%
(spot) with respect to the area of the visible hemisphere, in order to produce
a RV signal of about 1 m s−1. The last column gives the number Npl of pure
Doppler signals injected in the CCFs.

Case Nspot 𝜙r Lat Nfac 𝜙r Lat Npl
– – – [deg] – – [deg] –

(1) 1 0.5 0 0 – – 0
(2) 0 – – 1 0.5 0 0
(3) 2 0.0, 0.5 30 2 0.25, 0.75 30 0
(4) 0 – – 0 – – 1

components with eigenvalues greater than Smax are assumed to en-
close a significant fraction of correlated noise (e.g. activity-induced
shape distortions) and are used in the basis definition. Conversely,
components with eigenvalues smaller than Smax are assumed to be
dominated by white noise and discarded. Note that, in practice, the
selected principal components used in the basis are consistent with
the "elbow" heuristic method and account for an explained variance
score typically greater than 95%. Assuming that U is noise free,
all RV variations induced by distortions of the input CCFs are en-
closed in v∥ . Therefore, in principle, v⊥ will be composed of planet
signatures, Doppler shifts of unknown origin (e.g. residual stellar
activity or instrument systematics) and white noise. As a word of
caution, we stress that our theoretical framework is limited to spots
and faculae, which do affect the shape of the CCFs. Other processes
like super-granulation or meridional circulation may induce Doppler
shifts without distorting the CCFs (see Meunier 2021, and references
therein).

2.2 Application to synthetic data

Before applying the framework introduced in Sec. 2.1 to real solar
data, we conduct some simple tests on synthetic CCFs computed
using the SOAP2 online tool (Dumusque et al. 2014; Boisse et al.
2012). This code allows the user to simulate the effects of spots (i.e.,
pure brightness inhomogeneities) and faculae (via the inhibition of
the convective blueshift) on the absorption line profile. We consider
three different configurations of active regions, listed in Tab. 1. Cases
(1) and (2) correspond to a single spot and a single facula, at the equa-
tor of the star. For case (3), we consider a mix of four active regions,
two spots and two faculae, of equal latitude (30◦) and evenly spread
in stellar longitude. Following Berdyugina (2005) and Meunier et al.
(2010), the temperature of the spots is set to ∼650 K below the Sun’s
effective temperature. The size of the spots (resp. faculae) is set to
1% (resp. 0.18%) of the visible stellar hemisphere, so that the semi-
amplitude of the corresponding RV signal is about 1 m s−1, which is
the typical order of magnitude of activity-induced RV variations for
the Sun (e.g. Meunier et al. 2010).

Finally, in case (4), we consider the case of a pure Doppler signal in
absence of stellar activity, in order to double check that our method
does not affect planetary signatures. The CCFs are generated by
interpolating a non-spotted line profile computed with SOAP2, and
shifting the entire profile according to the RV signature induced by a
1-m s−1 sine-wave with a period equal to the stellar rotation period
to the data (note that no stellar activity is considered in this case). In
all cases, we generate a time series of 200 CCFs evenly spanning one
stellar rotation cycle, and add a white noise of 10−5 with respect to

Figure 1. Dynamical spectrum of the different time series of CCFs generated
with SOAP2 using the parameters listed in Tab. 1. Each panel depicts the
relative flux of the synthetic CCFs (after subtraction of a reference line profile,
computed in absence of activity), in percent, as a function of the rotational
phase of the star (X-axis) and line velocity (Y-axis).

the normalised continuum, which is of the same order of magnitude
as the photon noise in HARPS-N solar CCFs. Note that a adding
white noise significantly larger than the planet-induced Doppler shift
is crucial in case (4). Since the Taylor expansion of Eq. 1 is only
an approximation of the first derivative of the CCFs with respect to
the wavelength, a small fraction of the planet signature will still be
present in the residuals of Taylor expansion (i.e. the matrix CS in
Sec. 2.1). If the amplitude of this contribution is significantly weaker
than the noise, it will naturally be discarded during the dimension
reduction process (i.e. the SVD). For example, a 1-m s−1 Doppler
signal induces residuals of about 10−8 in CS, about 3-to-4 orders of
magnitude lower than the typical white noise in HARPS-N spectra.
A way to account for these variations, described in Collier Cameron
et al. (2021), Wilson et al. (2022) and John et al. (2022), is to perform
the dimensional reduction and search for planet-induced Doppler
signatures simultaneously, which we apply in Sec. 4.2. Note however
that the planet signatures considered in this study are small enough
not to affect significantly the shape-driven components of the Taylor
expansion.

We then apply the framework of Sec. 2.1 to the simulated data.
We use the unspotted line profile generated by SOAP2 as reference
(CR in Sec. 2.1). A total of 3, 4 and 4 principal components is used
to contruct the basis U in case (1), (2) and (3), respectively. As for
case (4), eigenvectors are found to be dominated by white noise and
are therefore discarded, which is expected as no shape distortion was
introduced in the data set. In this last case, adding components in the
matrix U introduces white noise in both v∥ and v⊥, but the amplitude
of the planet signature is only affected starting from 𝑼20 (∼3% of
the explained variance in a data set dominated by white noise). The
time series of noise-free reference-subtracted CCFs are shown in
Fig. 1 for the cases listed in Tab. 1. The shape- and shift-driven RVs
(i.e. resp. v∥ and v⊥ in Sec. 2.1) extracted in each case are shown
in Fig. 2. Unsurprisingly, the Doppler component is well recovered

MNRAS 000, 1–19 (2024)
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Figure 2. Time series of raw RVs (black solid lines), shift-driven RVs (v⊥;
blue dashed lines) and shape-driven RVs (v∥ ; yellow dotted lines), as a func-
tion of the rotational phase of the star, for the simulations described in Tab. 1.

in case (4). We also find that RV signals induced by active regions
are well filtered, with a suppression of 86, 94 and 78% of the stellar
activity signals in cases (1), (2) and (3), respectively. However, even
in the ideal case considered in this section, v⊥ still exhibits activity-
induced fluctuations of up to 0.1 m s−1 RMS in case (3), significantly
larger than the level of white noise (∼0.01 m s−1 RMS). This is due
to the fact that Doppler shifts and shape distortions are not purely
orthogonal in the Taylor expansion and, therefore, cannot be entirely
separated in Eq. 1. This can be understood by the fact that the first
derivative of the CCF has no reason to be orthogonal to higher-order
derivatives (especially with odd-order derivatives). By analysing the
periodicities in v∥ and v⊥ for cases (1) and (2), we find that, in
the case of a single spot, the shift-driven RVs, v⊥, still exhibits
modulations at harmonics of the star’s rotation period, whereas, in
the case of a single facula, v⊥ does not exhibit any explicit sign of
periodicity. Finally, we note that including more SVD components
in the basis projection affects only marginally the recovered RV
signals and that none of the additional principal components exhibit
significant periodic modulation.

3 DATA

3.1 Solar observations and data selection

Since 2015, disc-integrated solar spectra were collected at a 5-
min cadence with the stabilised cross-dispersed échelle spectrograph
HARPS-N (Cosentino et al. 2012; Dumusque et al. 2015; Phillips
et al. 2016; Collier Cameron et al. 2019; Dumusque et al. 2021),
mounted at the 3.58-m Telescopio Nazionale Galileo (TNG) at Roque
de Los Muchachos observatory (La Palma, Spain). These observa-
tions leverage the high-resolving power (R = 115 000) and the large
spectral coverage in the 𝑉 band (from 383 to 690 nm) of the in-
strument to achieve RV uncertainties lower than 0.5 m s−1. Our

input data set was collected between July 2015 and September 2023
and processed with the ESPRESSO data-reduction software (DRS
v.2.3.5; Pepe et al. 2021), adapted to the HARPS-N solar telescope
in Dumusque et al. (2021) and Dumusque et al., submitted.

Since the Sun’s surface is resolved, any partial obstruction of the
solar disk by, for example, clouds in Earth’s atmosphere, will likely
induce substantial distortions in the CCFs, and, thus, large spurious
RV deviations. In order to flag cloud-contaminated spectra, Collier
Cameron et al. (2019) perform a daily linear fit to the apparent solar
magnitude as a function of airmass (corresponding to the expected
extinction law in optical observation conditions). The magnitude is
given, as in Collier Cameron et al. (2019), by 𝑚 =−5 log10 S/N60,
where S/N60 is the signal-to-noise ratio (S/N) in the 60th spectral
order (corresponding to echelle order 98 which has a central wave-
length of 625 nm). The deviation of each data point to the best-fitting
extinction law is estimated through a Bayesian mixture model (Hogg
et al. 2010), assigning a probability 𝑝 that the spectrum is not con-
taminated by clouds. Following the recommendations of Dumusque
et al. (2021) and Collier Cameron et al. (2021), we only consider
spectra with 𝑝 > 0.95 in the following analysis and airmass obser-
vations lower than 2.25. After rejecting such spectra, our initial data
set of 147 741 solar spectra is reduced down to 104 573 (70.8%). The
median S/N in the 60th spectral order is 355 and the median RV un-
certainty per spectrum is 0.28 m s−1.The fraction of retained spectra
are in agreement with Al Moulla et al. (2023), where in their Fig. A.2
it is shown that for most days there are only about 0-2 outliers per
day among the dozens of daily HARPS-N solar spectra. By keeping
only the spectra least affected by clouds, we are able to compute
daily stacked spectra (see the following section) that are minimally
affected by differential extinction.

3.2 Spectra post-processing

The analysis of solar activity with HARPS-N is made complex since
Sun-as-a-star observations are different from real stellar observa-
tions. For instance, since the Earth is turning around the Sun and
since the Earth is not perfectly aligned with the solar equator, a
substantial change in the Sun’s projected rotational velocity (𝑣 sin 𝑖)
is observed, which introduces 1-year and half-a-year signals in the
times series of the full-width at half maximum (FWHM) of the CCFs
(Collier Cameron et al. 2019). Furthermore, the HARPS-N cryostat
was changed on the 4th October 2021, which also introduced an
offset in several CCF moments since the focus of the instrument
was realigned, slightly improving the resolution. Those instrumen-
tal interventions are expected to have RV contributions smaller than
0.5 m s−1 since no clear offset is observed by eye in either the solar
RVs or standard stars RVs, but likely affected the spectra in some
way.

In order to remove those signals and better isolate stellar activity
contributions, we post-processed the S1D spectra time-series with
YARARA (Cretignier et al. 2021). Note that we did not use any
time-domain empirical corrections developed for the atmospheric
extinction or 𝑣 sin 𝑖 (Collier Cameron et al. 2019; Dumusque et al.
2021), since those corrections were developed for the time-domain
and their ability to perform in the wavelength domain is unclear.
However, as shown below, YARARA itself is able to correct for
them. YARARA is a post-processing methodology that aims to split
the different contaminations coming from the instruments, such as
ghosts, stitchings, interference patterns, ThAr bleeding, point spread
function (PSF) defocus, from the tellurics and from the stellar activity
directly in the spectra.

The main steps of the pipeline are to (i) daily stack the S1D spectra

MNRAS 000, 1–19 (2024)
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Figure 3. YVA solar dataset. From top to bottom: time series of HARPS-N solar RVs, FWHM, velocity span and equivalent width of the HARPS-N solar CCFs,
and S index. The vertical dashed lines delimitate the three seasons defined in Tab. 2.

in the heliocentric rest-frame, (ii) normalise the continuum of the
spectra with RASSINE (Cretignier et al. 2020b) and (iii) correct
the continuum-normalised spectra with YARARA (Cretignier et al.
2021, 2023). The dataset after daily stacking the spectra and removing
anomalous residuals among them2 consists of 1880 daily-stacked
spectra. Note that we only use the first version of YARARA (hereafter
"YV1"), which performs systematics correction in the wavelength
domain as described in Cretignier et al. (2021). The pipeline was
slightly upgrade on HARPS-N to better correct the cryostat change
(see Appendix A).

The final RVs were obtained from CCFs with a line list tailored for
the Sun as described in Cretignier et al. (2020a), formally described as
"Custom" in Bourrier et al. (2021) and "Kit-Cat" line list in Cretignier
(2022). The CCF’s FWHM, bisector velocity span, (Vs; Hatzes 1996;
Queloz et al. 2001), and equivalent width (EW; product of FWHM
and contrast), as well as the Mount Wilson S index (SHK; Noyes et al.
1984) are also computed from the processed spectra. The CCF EW
(i.e. the area of the CCF) is a known tracer of stellar temperature
and metallicity (Malavolta et al. 2017). As the Sun’s metallicity is
expected to remain roughly constant during our observations, the
CCF EW is a good tracer of global temperature changes in the solar

2 Anomalous residuals spectra can be due to spectra with unperfect correc-
tions or lower SNR observations.

photosphere (e.g. magnetic intensification and/or spot-induced flux
variations Collier Cameron et al. 2019). On the other hand, Vs,
defined as the RV difference beween the center of a Gaussian fit to
the whole CCF and the center of a parabola fit on the core of the CCF
(i.e. within ±2.3 km s−1), is highly sensitive to velocity suppressions
on the solar disk (mostly due to faculae).

Because YARARA is working with spectra interpolated on a 0.01-
Å wavelength grid, the CCFs are slightly oversampled to velocity
bins of 530 m s−1, compared to the 820 m s−1 of the usual DRS
(Dumusque et al. 2021). This is not critical, but it means that two
consecutive velocity bins are not fully independent and share some
covariance. Flux uncertainties on the CCF are artificially boosted by
the square-root of the oversampling factor to cancel the oversampling
effect. The natural output of the YARARA post-processing (spectra,
CCFs or time-series) is usually already corrected from the stellar
activity component. Since the purpose of this work is to study the
solar activity signals, we introduced back the correction related to
activity by YARARA to form an "YVA" dataset in order to follow
the terminology introduced in Dalal et al. (prep). The time-series
obtained with the YVA dataset are shown in Fig.3.

MNRAS 000, 1–19 (2024)
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Table 2. RMS of the time series of vobs, v⊥ (shift-driven RVs) and v∥ (shape-
driven RVs), over different periods of time. In each case, the first four principal
components are used to build the time series of shape-driven CCFs, C∥ , from
which v∥ is extracted.

Name Period vobs v⊥ v∥

Season 1 2015 - 2018 1.34 m s−1 1.08 m s−1 0.97 m s−1

Season 2 2018 - 2021.8 1.07 m s−1 1.00 m s−1 0.50 m s−1

Season 3 2021.8 - 2023.7 1.98 m s−1 1.11 m s−1 1.69 m s−1

Altogether 2015 - 2023.7 2.05 m s−1 1.06 m s−1 1.76 m s−1

Figure 4. Time series of reference-subtracted Solar CCFs (top panel), Doppler
components computed using Eq. 1 (CD, middle panel), and shape-driven
residuals (CS, bottom panel).

4 RESULTS

4.1 Planet-free case

We apply the framework defined in Sec. 2.1 to the time series of
daily-binned solar CCFs. Using the mean line profile as reference
profile CR, we compute the time series of reference-subtracted CCFs
(see the first panel of Fig. 4). From Eq. 1, we derive a time series of
shift-driven (i.e. Doppler component in Sec. 2.1) and shape-driven
CCFs, shown in the middle and bottom panels of Fig. 4. As expected,
the Doppler component only contains information on the first deriva-
tive of the CCFs, as evidenced by the fact that, at each epoch, the
CCF variations are symmetrical with respect the center of the line
(i.e. zero-velocity point). On the other hand, shape-driven residu-
als exhibit a more complex structure, non symmetrical with respect
to the line center, suggesting that it probes higher-order derivatives
of the CCF variations. We also double checked that the width and
asymmetry of the shift-driven profiles remain constant over time.

We then apply SVD to the shape-driven CCFs and extract a basis
of orthogonal vectors tracing the main non-Doppler-induced line
profile variations. Applying the procedure described in Sec 2, we
use the first four principal components in our reconstruction. As
shown in Fig. 5, the first eigenvector 𝑼1 correlates strongly with
vobs and usual activity indicators. In particular, we obtain a weighted
Pearson correlation coefficient of 0.90 between 𝑼1 and SHK, which
suggests that the variations of these two quantities are driven by
similar processes (see Sec. 5 for a more detailed comparison). Higher-
order SVD components tend to exhibit weaker correlations with CCF
indicators, with the exception of𝑼4, which exhibits a relatively strong

anti-correlation with the EW of the CCF, indicating that this indicator
could be a good proxy of the photospheric temperature (see Collier
Cameron et al. 2019).

We project the input CCFs onto the basis defined by components
𝑼1 to 𝑼4, and derived shape- and shift-driven RVs (resp. v∥ and v⊥)
using the method described in Sec. 2.1. Both time-series are shown
in Fig. 6 and their root-mean-square (RMS) deviations are given in
Tab. 2. Starting from a dispersion of 2.1 m s−1 in the input data,
the shape- and shift-driven RVs exhibit RMS dispersions of 1.8 and
1.1 m s−1, respectively3. In order to assess the effectiveness of the
method for different levels of solar activity, we divide our input data
set in the three seasons shown in Fig. 3. From 2015 to 2018 (Sea-
son 1), the Sun reaches the end of its activity cycle but still exhibits
clear signs of activity. The Sun enters then a long period of activity
minimum (Season 2, 2018-2021.8) which lasts until the end of 2021.
With the start of Cycle 25 (Season 3, 2021.8-2024), the Sun exhibits
activity signals with significantly larger amplitude than in Season 1.
Note that this division is motivated by two factors. Firstly, the cycle-
induced evolution of the solar activity, evidenced, for example, by
the amplitude of the fluctuations of the disk-integrated magnetic flux
density (lower than 0.5 G in Season 2, according to SDO/HMI data
extracted with SOLASTER; see Ervin et al. 2022) allows to to sepa-
rate three different activity regimes. Secondly, important instrument
maintenance operations, namely the change of Fabry-Pérot interfer-
ometer, between Seasons 1 and 2, and the refurbishment of the CCD
camera, between Seasons 2 and 3, justify the definition of the three
seasons adopted in this study. From Tab. 2, we note that our activity-
filtering framework performs best when the Sun is more active, with
a 44% reduction in RV RMS in Season 3, compared to only 7% in
Season 2 (solar minimum). We also note that, in Season 1, our results
are similar to those obtained with SCALPELS, on a similar data set
(Collier Cameron et al. 2021).

As shown in Fig. 6, the shape-driven RVs seem to enclose most of
the long-term RV variations, primarily driven by the magnetic cycle.
This is further evidenced in the generalised Lomb-Scargle (GLS;
Zechmeister & Kürster 2009) periodograms of the RV time series
(see bottom curve on the top panel of Fig. 7), which are dominated
by peaks at periods larger than ∼100 d. We note also a significant
power near the Earth orbital period, also present in the periodogram
of component 𝑼2, attributable to residuals of the effects of Earth’s
orbital eccentricity and solar obliquity on the FWHM of the CCF,
as described in Collier Cameron et al. (2019). These effects will
not be observed in other stars. We also note that the power at the
Sun’s rotation period and harmonics remains strong in the shift-
driven RVs, despite a fraction of it being transferred to the shape-
driven RVs. Surprisingly, components𝑼3 and𝑼4 exhibit a significant
modulation of the Sun’s rotation period and first harmonics and, thus,
could potentially act as good proxies of quasi-periodic stellar activity
signals (see Sec 5), although no strong correlation with CCF activity
indicators is observed.

4.2 Effects on planet recovery

In order to assess the ability of our activity-filtering procedure to pre-
serve planet RV signatures, we create 1 000 data sets from the solar
HARPS-N observations, each containing a single planetary signal

3 Note that the quadratic sum of the RMSs of the shift- and shape-driven
RVs is not strickly equal to the RMS of vobs, which reflects the fact that the
decomposition defined in Sec. 2.1 is not entirely orthogonal.
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Figure 5. First four SVD components (𝑼1 to 𝑼4) plot against the median-subtracted HARPS-N solar RVs, the FWHM, bisector velocity span and EW of
the CCFs, and the SHK time series. The individual points are colour-coded by date of observation, bluer (redder) points corresponding to more recent (older)
observations. In the bottom right of each panel, we indicate the Pearson correlation coefficient of the two time series (weigthed by the uncertainties on the X
axis). Note that all correlation coefficients are associated with 𝑝-values lower than 0.05, and are thus considered to be significant.

Figure 6. Time series of HARPS-N solar RVs (top curve), shift-driven RVs
(v⊥; curve in the middle) and shape-driven RVs (v∥ ; bottom curve). The
typical formal error bar on each RV point is about 0.16 m s−1. The vertical
dashed lines divide the data into the three periods shown in Fig. 3.

directly injected in the CCF time-series with the same temporal sam-
pling. As we assume the planet orbit to be circular, the corresponding
RV signature, 𝑣p, as a function of the time, 𝑡, is given by

𝑣p (𝑡) = 𝐾inj sin 2𝜋
[
𝑇0 − 𝑡
𝑃orb

+ 𝜙p

]
(3)

where the reference time, 𝑇0, is set to BJD = 2 457 223.49054 (i.e.,
the time of our first observation), and where Kinj, Porb and 𝜙p are
respectively the semi-amplitude, orbital period and orbital phase of
the injected signature. These three parameters are randomly drawn
using log-uniform laws (for Kinj and Porb) and uniform laws (for 𝜙p),
as described in Tab. 3.

To inject the planet signature, we interpolate each CCF in the solar
rest frame using a centered square-exponential Gaussian Process
(GP; Rasmussen & Williams 2006; Aigrain & Foreman-Mackey
2022) with covariance function 𝑘 between each pair of velocity bins
𝑣𝑖 and 𝑣 𝑗 given by

𝑘 (𝑣𝑖 , 𝑣 𝑗 ) = 𝐴 exp

[
−
(𝑣𝑖 − 𝑣 𝑗 )2

2𝜆2
e

]
+ 𝜂2

𝑖 𝛿𝑖, 𝑗 (4)

where 𝜂𝑖 , is the uncertainty on the CCF flux associated with pixel 𝑖,
and 𝛿 stands for the Kronecker delta. The two free hyperparameters of
Eq. 4, namely the GP amplitude 𝐴 and correlation length 𝜆e, are esti-
mated by maximising the likelihood of the data, computed using the
GEORGE python module (Ambikasaran et al. 2015). As a sanity check,
we measured the RV and FWHM of each planet-injected CCF by fit-
ting a Gaussian profile to it. The resulting RV/FWHM time-series
differ by no more than 0.1𝜎 from their DRS-provided counterparts,
confirming that this interpolation procedure only marginally affects
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Figure 7. Top panel: GLS periodogram of the HARPS-N solar RVs (top line),
the shift-driven RVs (v⊥, middle line) and shape-driven RVs (v∥ , bottom line).
Bottom panels: GLS periodogram of the first four principal components, 𝑼1
to𝑼4, of the shape-driven CCFs. From right to left, the vertical orange dashed
and magenta dotted lines indicate the Solar rotation period (and first two har-
monics) and the Earth orbital period (and first harmonic). The periodograms
were computed using the astropy python module (Astropy Collaboration
et al. 2013, 2018, 2022).

the shape and position of the line profile. As a word of caution, we
note that injecting the planet signature at the CCF level rather than
at the spectrum level assumes that the Doppler shift is integrally pre-
served in the cross-correlation process. This assumption is motivated
by recent studies demonstrating that reliable planet parameters were
extracted from the CCF (e.g. John et al. 2023; de Beurs et al. 2024).

Our procedure to retrieve the injected planet signatures is similar of
that used in Collier Cameron et al. (2021) and Wilson et al. (2022).
For each data set, we jointly apply the dimensional reduction of
Sec. 2.1 and fit for a planet Doppler motion with Eq. 3. As detailed in
the Appendix A of Wilson et al. (2022), projecting the observed RVs
vobs onto the matrix P = 𝑰−U ·U⊺ , where 𝑰 is the identity matrix and
U the basis defined in Sec. 2.1 (using four principal components), is
equivalent to subtracting v∥ from vobs. The likelihood L of the data
given the model parameters 𝜽 is then given by

lnL = − 1
2
[
P · (𝒗obs − 𝒗p (𝜽))

]⊺ · 𝚺−1 [
·P · (𝒗obs − 𝒗p (𝜽))

]
− 1

2
ln|𝚺 | − 𝑁

2
ln 2𝜋 (5)

where 𝒗p is the planet RV model given by Eq. 3 and 𝑁 is the number
of data points. The covariance matrix 𝚺 is assumed diagonal, with
Σ𝑘𝑘 = 𝜎2

𝑘
+ 𝜎2

𝑗
, where 𝜎𝑘 is the formal RV uncertainty on the 𝑘-th

data point and 𝜎𝑗 is a free parameter of the model to absorb RV
variations that are not captured by Eq. 3 or the formal RV uncertain-
ties (e.g. activity and granulation signals, instrumental stability). We
assume that the planet orbital period and phase are known, leaving
the planet RV semi-amplitude and the jitter term 𝜎𝑗 as the only free
parameters of the model. Their posterior probablity given the data
is estimated, in the Bayesian framework, using the affine-invariant
Markov Chain Monte Carlo (MCMC) process emcee (5 000 itera-
tions of 100 chains; Foreman-Mackey et al. 2013). The best-fitting
parameters and 1𝜎-uncertainties are estimated from the median and

Table 3. Probability laws used to generate the semi-amplitude, orbital period
and orbital phase of the planet RV signatures injected in the HARPS-N Solar
CCFs (see Sec. 4.2). U and log U stand respectively for the Uniform and
log-Uniform probability laws. The last two columns give the minimum and
maximum values used for each parameter.

Parameter Notation Probability law Min Max

Semi-amplitude Kinj log U 0.05 m s−1 5.0 m s−1

Orbital period Porb log U 1.0 d 500 d
Orbital phase 𝜙p U 0.0 1.0

from the 16th and 84th percentiles of the chain after removing a
burn-in period significantly longer than the auto-correlation time of
the chain (about 100 iterations). As a reference, we also fit Eq. 3
to the input RV time-series, vobs, before filtering the shape-induced
contributions.

The distribution of recovered RV semi-amplitudes, kest, is shown
as a function of Kinj in the top panel of Fig. 8 for Kinj<1 m s−1.
In most cases, the recovered values of the planet RV semi-amplitude
match their injected counterpart, with a slope of 1.03± 0.1. As shown
in the bottom panel of Fig. 8, devivations from the identity are
observed when the planet orbital period lies close to the Sun’s rotation
period or to the Earth orbital period (and first harmonic), which
roughly corresponds to the location of the peaks in the periodogram
of v⊥ (see Fig. 7). No particular trend is observed between kest and
the injected planet RV semi-amplitude or orbital phase.

Let us assume, conservatively, that a planet is detected if (i) kest
differs from Kinj by less than 1𝜎, and (ii) kest differs from 0
by at least 3𝜎. Using this criterion, about 45} of planets with
RV semi-amplitudes lower than 1.0 m s−1 are detected from the
activity-filtered RVs. This detection rate slowly decreases until
Kinj ≈ 0.2 m s−1, where 29% of the injected planets are still recov-
ered, and drops near zero for lower values of Kinj. The planet detec-
tion rate decreases roughly linearly with the planet orbital period, and
is about 30% and (resp. 20%) for planet with orbital periods greater
than 100 d (resp. 300 d). The fraction of detected planets from vobs
and v⊥ is shown in the (Kinj, Porb) space in Fig. B1. We find that,
on average, our sensitivity to planet signatures increases by about
20% from vobs to v⊥, and that this increase is the most spectacular
for Earth-mass planets with orbital periods larger than 100 d, where
the detection rate skyrockets by ∼50%. However, Earth-mass planets
with orbital periods larger than 300 d remain mostly undetected in
both time series, which is in line with the predictions of Meunier
et al. (2023)4.

In order to assess how the sampling strategy affects our activity-
filtering framework, we perform the planet injection-recovery for
different numbers of randomly-selected data points, between 250
and 1750. For each sampling, we repeat the injection-recovery of the
same 1 000 planet signals (using the same sampling for all planets).
Fig. 9 shows the mean error Kerr on the RV semi-amplitude recovered
with and without activity filtering. On average, Kerr is reduced by
a factor ∼2 between vobs and v⊥. In both cases, the evolution of
the detection rate with the number of points is well described by a
square-root law (with reduced 𝜒2 of 1.0 and 1.1 for vobs and v⊥;
see Fig. 9). This suggests that the precision on kest is mostly driven

4 Note also that the evolution of the planet detection rate from v⊥ with the
planet mass is found roughly similar to that shown, for example, in the figure 8
of Meunier et al. (2023)
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Figure 8. Top: Planet RV semi-amplitude, kest, recovered from the activity-
filtered RVs (v⊥, dark blue dots) and from the raw RVs (vobs, light gray
dots), as a function of the RV semi-amplitude Kinj of the planets injected in
Sec 4.2. The magenta dotted and dashed lines indicate the identity and the
best-fitting straight line, respectively. Bottom: Difference between kest and
Kinj as a function of the orbital period Porb of the injected planet. The vertical
orange dashed and magenta dotted lines indicate the Solar rotation period
(and first harmonic) and the Earth orbital period (and first harmonic).

by the number of data points used in the fit, despite the presence of
super-granulation, activity residuals and instrumental systematics.

5 GAUSSIAN PROCESS REGRESSION

Our activity-filtering framework provides a new time series of RVs,
v⊥, less dispersed than the input RVs, vobs. In the last section, we
demonstrated that planet signatures in vobs would be largely pre-
served in v⊥. However, while the activity-filtering algorithm turns
out to be efficient at filtering long-term activity effects, it leaves a sig-
nificant rotationally-modulated component in v⊥, which also needs
to be filtered out in order to improve the detectability of small planet
signatures. Gaussian Process regression has become widely used to
model quasi-periodic signals (Haywood et al. 2014; Rajpaul et al.
2015; Barragán et al. 2022b; Nicholson & Aigrain 2022; Aigrain
& Foreman-Mackey 2022). In this section, we investigate how GPs
can be used to model the stellar activity contributions in vobs and
v⊥. In Sec. 5.1, we first investigate how the statistical properties of

Figure 9. Mean error 𝐾err on the planet RV semi-amplitude estimated from
the activity-filtered RVs (v⊥, dark blue dots) and from the raw RVs (vobs, light
blue open circles) as a function of the number of data points Npts. For each
case, the dashed line indicates the the best-fitting square-root law (reduced
𝜒2 of 1.0 and 1.1 for vobs and v⊥, respectively).

vobs and usual stellar activity indicators compare to each other and
evolve over time. In sec. 5.2, we assess the ability of GPs to model
the quasi-periodic activity signals in v⊥, and in𝑼1 to𝑼4. In Sec. 5.3,
we finally investigate how a joint multi-dimensional GP-based ac-
tivity filtering and planet search algorithm will perform for different
indicators and input RV signals. All GP modellings in this section
were performed using the open-source software pyaneti (Barragán
et al. 2019, 2022a) with non-informative priors for all parameters.

5.1 Modelling of usual activity proxies

We start by independently modelling the HARPS-N RV time series,
vobs, as well as the time series of usual activity proxies (FWHM,
Vs, SHK), using a one-dimensional (1D) GP with quasi-periodic
covariance kernel 𝑘 between each pair of epochs 𝑡𝑖 and 𝑡 𝑗 given by

𝑘 (𝑡𝑖 , 𝑡 𝑗 ) = 𝐴2 exp

[
−

sin2 (
𝜋
(
𝑡 𝑗 − 𝑡𝑖

)
/𝑃GP

)
2𝜆p

−
(
𝑡 𝑗 − 𝑡𝑖

)2
2𝜆e

]
, (6)

where 𝑃GP is the GP period, which corresponds to the stellar rota-
tion period (Angus et al. 2018; Nicholson & Aigrain 2022), 𝜆p is the
inverse harmonic complexity and 𝜆e is the GP evolution time scale
(already defined in Eq. 4). Each time series is modelled by six param-
eters: three hyper-parameters in the covariance matrix (Eq. 6), the
GP amplitude 𝐴, a constant offset, and one additional uncorrelated
jitter term 𝜎j, added in quadrature to the diagonal of the covariance
matrix, to absorb any variations not accounted for by the GP. The
parameter space is explored using the Bayesian Markov chain Monte
Carlo (MCMC) sampler defined in Barragán et al. (2019), with un-
informative priors for the parameters. To ensure that the MCMC
process has converged, pyaneti iteratively runs 250 independent
chains of 5 000 steps until the chains converge, which is assessed
using the statistics of Gelman & Rubin (1992). As detailed in the
Section 2.5 of Barragán et al. (2019), the code compares the vari-
ances between chains and within chains and uses the scaling factor �̂�
introduced in Gelman et al. (2004) to assess convergence (typically
with �̂� < 1.02). We then run a last MCMC process with 5 000 steps
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Table 4. Best-fitting evolution time scale (𝜆e), inverse harmonic complexity (𝜆p) and period (PGP)

of the one-dimension GP fit to the different time series analysed in this study.

End Cycle 24: 2015-2018 Solar minimum: 2018-2022 Start Cycle 25: 2022-2024
𝜆e [d] 𝜆p PGP [d] 𝜆e [d] 𝜆p PGP [d] 𝜆e [d] 𝜆p PGP [d]

vobs 18.0 ± 1.6 0.22 ± 0.02 26.37+0.45
−0.44 21.8 ± 1.5 0.32 ± 0.03 27.25 ± 0.35 21.4+1.3

−1.4 0.32 ± 0.02 27.39 ± 0.36
FWHM 22.2 ± 1.1 0.51 ± 0.03 27.70+0.43

−0.42 27.7+1.8
−1.7 0.54 ± 0.04 27.58+0.37

−0.35 22.9+1.2
−1.3 0.56 ± 0.04 27.59+0.43

−0.44
Vs 19.8 ± 1.1 0.28 ± 0.02 26.43+0.37

−0.33 22.7+1.6
−1.5 0.33 ± 0.02 27.16 ± 0.35 23.0+1.2

−1.3 0.32 ± 0.02 27.45+0.28
−0.27

SHK 21.6 ± 1.2 0.59 ± 0.04 28.01+0.49
−0.51 23.9+1.3

−1.4 0.55 ± 0.04 27.81+0.44
−0.45 22.7+1.3

−1.4 0.57+0.04
−0.03 28.75+0.46

−0.45
v∥ 22.1 ± 1.5 0.52 ± 0.04 28.75 ± 0.62 25.5+2.5

−2.3 0.70+0.10
−0.08 25.67+0.66

−0.64 22.3+1.3
−1.4 0.60+0.05

−0.04 27.63+0.50
−0.48

U1 22.2 ± 1.4 0.55 ± 0.04 28.65+0.52
−0.53 26.8+2.4

−2.2 0.67+0.07
−0.06 26.23+0.56

−0.57 22.2 ± 1.5 0.59 ± 0.04 28.47+0.51
−0.59

U3 22.7+4.1
−2.9 0.21 ± 0.04 26.11+0.50

−0.40 20.7 ± 3.8 0.49+0.28
−0.13 26.58+1.88

−1.21 18.2 ± 2.3 0.21+0.03
−0.02 27.55+0.51

−0.49
U4 23.0+2.8

−2.4 0.20 ± 0.02 26.75+0.31
−0.29 23.4+5.6

−4.3 0.32+0.09
−0.06 26.93+1.15

−0.83 24.1+2.6
−2.2 0.21 ± 0.02 26.99+0.24

−0.23
v⊥ 18.8+3.7

−2.4 0.18+0.03
−0.02 26.01+0.58

−0.54 20.7+1.9
−1.8 0.35+0.05

−0.04 27.32+0.62
−0.59 21.9+2.2

−2.3 0.23 ± 0.02 27.36+0.38
−0.43

Figure 10. One-dimensional posterior densities of the hyper-parameters of the GP fit to the HARPS-N solar RVs (filled grey histograms), and to the time series
of FWHM (thin blue lines), bisector velocity span (gold lines) and SHK (thick red lines), for the three seasons listed in Tab. 2. Columns 1, 2 and 3 show the
posterior densities of the GP evolution time scale (𝜆e), inverse harmonic complexity (𝜆p) and period (PGP).

of 250 independent chains, corresponding to 125 000 independent
samples for each parameter, from which we estimate the best-fitting
value with 1𝜎 uncertainties.

Since the HARPS-N solar data set covers more than half of the
Sun’s activity cycle, it is likely that the statistical properties (i.e.
evolution time scale, harmonic complexity, period) of the activity
RV signal vary over the course of the observations. We therefore
independently analyse each of the three seasons defined in Tab. 2
(i.e. 2015-2018, 2018-2021, 2021-2023). The best-fitting GP hyper-

parameters for each season are given in Tab. 4, and their associated
1D posterior distributions are shown in Fig. 10.

Significant variations are observed from one season to the next.
The RV GP period increases from ∼26.4 d, in the 2015-2018 season,
to ∼27.4 d after 2022 (i.e. ∼2𝜎 increase). This is in line with ex-
pectations as active regions are found at higher latitudes in the start
of the activity cycle and migrate near the equator at the end of the
cycle (see Hathaway 2010, for a review of solar activity cycle). The
difference in rotation periods then simply reflects the latitudinal dif-
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ferential rotation of the Sun (e.g. Howard & Harvey 1970; Snodgrass
& Ulrich 1990; Beck 2000). For example, the average latitudes of
sunspots computed from the Solar Optical Observing Network of the
US Air Force (USAF), with the help of the US National Oceanic and
Atmospheric Administration (NOAA), is about 12◦ in 2015-2018
and 20◦ in 2022-20245, corresponding to a difference of about 1d in
rotation period (using the latitudinal differential rotation profile of
Snodgrass & Ulrich 1990), consistent with our estimates in Tab. 4.

We also note that the RV GP evolution time scales (𝜆e) are al-
most 2𝜎 larger (i.e. ∼3 d) past 2018. Disk-resolved solar observa-
tions found larger active regions in the 2022-2024 period than in
2015-20185, which is consistent with our observations as the active
region evolution time scale roughly scales with the surface area of the
features (e.g. Leighton 1964; Wang et al. 1989; Foukal 1998). The
higher harmonic complexity (i.e. lower 𝜆p) in the 2015-2018 season
can be explained by the fact that equatorial active regions perturbs
the wings of the profile more than higher-latitude regions and thus
have an higher impact on the flux derivative which induce a sharper
RV signature. As expected, 𝜆p is about twice as large for indicators
of the photospheric flux (FWHM, SHK) than for indicators of the first
temporal derivative of the flux, like RV Vs (e.g. Aigrain et al. 2012;
Klein & Donati 2019; Nicholson & Aigrain 2022). The evolution of
the GP covariance kernel over time, and its effect on the modelling
of RV time series, is discussed in Sec 6.1.

5.2 Modelling activity-filtered RVs with Gaussian Processes

Using the 1D GP framework described in Sec. 5.1, we model the
time series of v⊥, v∥ , as well as 𝑼1 to 𝑼4. Except 𝑼2, for which the
MCMC process does not converge, all time series exhibit a quasi-
periodic modulation well captured by the GP. For these time series,
the best-fitting GP hyper-parameters are given in Tab. 4 and the
posterior distributions of the fit parameters are shown for v∥ and v⊥
in Fig. 11.

As already intuited from Fig. 6, we find that the shape-driven RVs,
v∥ , are systematically smoother (i.e. with larger values of 𝜆p) than
vobs, which suggests that the activity signal within v∥ is mostly driven
by variations of the photospheric flux (typically induced by faculae
and plages). This is further evidenced by the fact that v∥ tends, in
general, to evolve on longer time scales than vobs. On the other hand,
the shift-driven RVs v⊥, exhibit a higher harmonic complexity and
evolve on time scales similar to vobs, which suggests that the stellar
activity signal in v⊥ is sensitive to the variations of the first derivative
of the photospheric flux (e.g. induced by spots). As expected, the best-
fitting GP amplitudes are consistent with the RMS of the different
time series given in Tab. 2.

In all three seasons, a value of 0.25-0.3 m s−1 is obtained for
jitter term in v∥ , much lower than its counterpart in vobs. This is
expected as, by definition, v∥ contains only a small fraction of the
white noise of HARPS RV and, therefore, the estimate of 𝜎j reflects
more what the GP cannot model than the real dispersion of white
noise in v∥ . On the other hand, jitter terms of 0.5 to 0.6 m s−1 are
found for vobs and v⊥6. In each case, the jitter term is considerably
larger than the photon noise of ∼ 0.1 m s−1, on the daily-binned RVs,
which suggests that a significant fraction of the RV variation can
be explained neither by the GP nor by formal uncertainties. In our
daily-binned data set, both oscillation- and granulation-driven RV
variations are expected to be averaged out due to their short evolution

5 http://solarcyclescience.com/index.html
6 The typical error bar on the jitter term is about 0.04 m s−1.

time scales (e.g. Dumusque et al. 2011; Chaplin et al. 2019). In
contrast, super-granulation, which evolves on time scale of days,
will be only partially reduced by our binning process. Recently, Al
Moulla et al. (2023) and Lakeland et al. (2024) measured RV RMS
contributions of ∼0.7 m s−1 and ∼0.9 m s−1 for super-granulation in
the HARPS-N solar data, consistent with the simulations of Meunier
et al. (2015). Therefore, the dispersion budget in the RV residuals is
likely a mix of super-granulation and long-term stability (∼0.4 m s−1

for HARPS-N).
The posterior densities of the hyper-parameters of the GP fit to

𝑼1, 𝑼3 and 𝑼4 are shown in Fig. C4, and their best-fitting values are
given in Tab. 4. As𝑼1 is by far the dominant component of the SVD
to the shape-driven CCFs, it follows a very similar behaviour to v∥
and to SHK (as expected from Fig. 5). On the other hand, 𝑼3 and 𝑼4
exhibit similar statistical properties as v⊥, which suggests that they
could be good proxies of the stellar activity signal in the latter time
series. This is investigated in the next section.

5.3 Multi-dimensional GP analysis

In the practical case of the search for planet signatures in observed
RVs, the shape-driven RVs, v∥ could potentially be used as planet-
independent proxies to mitigate stellar activity signals. The multi-
dimensional GP framework of Rajpaul et al. (2015) is one of the
most robust ways to simultaneously model RVs and activity prox-
ies, thereby boosting the number of constraints on the stellar activity
parameters. On the other hand, the shift-driven RVs, v⊥, are less dis-
persed than vobs, which could boost the sensitivity to low-ampitudes
planet signatures. Furthermore, we have shown in Sec. 5.2 that the
residual quasi-periodic activity signals in v⊥ would be well modelled
by a GP with quasi-periodic kernel. In this section, we explore how
vobs and v⊥ perform in the search for long-period low-amplitude
planet signatures.

5.3.1 Method

In our model, we assume that the activity signal in the RVs and
indicators follow a FF’-like relation (Aigrain et al. 2012; Rajpaul
et al. 2015). Each time series 𝜶 is expressed as a linear combination
of a latent variable 𝐺 (typically the square of the photospheric flux)
and its first temporal derivative ¤𝐺, such that, at time 𝑡,

𝛼(𝑡) = 𝐴𝛼𝐺 (𝑡) + 𝐵𝛼 ¤𝐺 (𝑡) + 𝐶𝛼, (7)

where the amplitudes 𝐴𝛼, 𝐵𝛼 and 𝐶𝛼 are free parameters of the
model. The latent variable 𝐺 is modelled as a GP with the quasi-
periodic covariance kernel defined in Eq. 6.

We inject the RV signature of a single planet on a circular orbit to
the HARPS-N solar CCFs. We assume an orbital period of 100 d and a
RV semi-amplitude of 0.4 m s−1, which corresponds to a planet mass
of 2.9 M⊕ . In order to limit bias, three different orbital phases (𝜙p in
Eq. 3) of 0.0, 0.3 and 0.7 are considered. We apply the framework of
Sec. 2.1 to generate time series of shift- and shape-driven RVs, from
the input RVs. We then use the multi-dimensional GP framework
to model the activity signal within (1) vobs and FWHM, (2) vobs
and Vs, (3) vobs and SHK, (4) vobs and v∥ . These indicators exhibit
relatively similar evolution time scales and period to vobs, and are
therefore promising candidates for multi-dimensional GP modelling.
Differences in 𝜆p are naturally accounted for in the framework of
Barragán et al. (2022a).

Since we have demonstrated that planet signatures are mostly pre-
served in v⊥, the planet search can as well be performed directly from
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Figure 11. Uni-dimensional posterior densities of the jitter term, GP amplitude and GP hyper-parameters of the fit to the HARPS-N solar RVs (filled gray
distributions), the shape-driven RVs v∥ (thin gold lines), and the shift-driven RVs v⊥ (thick blue lines).

Table 5. Estimates of the planet RV semi-amplitude (kest) and RV jitter (𝜎j) for the different cases considered in Sec. 5.3. Note that the semi-amplitude of the
planet RV signature injected in the data is Kinj = 0.4 m s−1.

Case Time series 2015-2018 2018-2022 2022-2024

kest[m s−1] 𝜎j [m s−1] kest[m s−1] 𝜎j [m s−1] kest[m s−1] 𝜎j [m s−1]

(R0) vobs 0.40 ± 0.13 0.65+0.03
−0.02 0.39 ± 0.12 0.54 ± 0.02 0.43+0.22

−0.19 0.49+0.03
−0.02

(R⊥) 𝑣⊥ 0.41 ± 0.09 0.71+0.06
−0.04 0.40 ± 0.12 0.62 ± 0.02 0.40 ± 0.11 0.58+0.03

−0.02
(1) vobs+ FWHM 0.40 ± 0.06 0.89+0.05

−0.02 0.39+0.07
−0.06 0.81 ± 0.02 0.40+0.07

−0.06 0.94+0.03
−0.02

(2) vobs+ Vs 0.40 ± 0.07 0.90+0.05
−0.02 0.38+0.12

−0.11 0.62 ± 0.02 0.41 ± 0.07 0.80+0.02
−0.03

(3) vobs+ SHK 0.39 ± 0.07 0.95 ± 0.03 0.38 ± 0.06 0.83 ± 0.02 0.40 ± 0.08 1.03 ± 0.02
(4) vobs+ 𝑣⊥ 0.38 ± 0.07 0.93 ± 0.03 0.38 ± 0.11 0.55 ± 0.02 0.40 ± 0.07 0.98 ± 0.03
(5) v⊥ + FWHM 0.40 ± 0.07 1.01+0.03

−0.02 0.39 ± 0.06 0.90 ± 0.02 0.40+0.08
−0.07 1.06+0.02

−0.03
(6) v⊥ + 𝑉s 0.42 ± 0.07 0.97 ± 0.02 0.36 ± 0.09 0.76 ± 0.03 0.40+0.09

−0.07 1.02+0.03
−0.04

(7) v⊥ + 𝑆HK 0.39 ± 0.07 1.01+0.03
−0.02 0.39+0.06

−0.07 0.92 ± 0.02 0.40+0.08
−0.07 1.08+0.03

−0.02
(8) v⊥ + 𝑣∥ 0.41 ± 0.07 1.01 ± 0.02 0.40 ± 0.14 0.67 ± 0.04 0.40 ± 0.07 1.07 ± 0.02

this time series7. We therefore consider four additional cases, namely
(5) v⊥ and FWHM, (6) v⊥ and Vs, (7) v⊥ and SHK, and (8) v⊥ and
v∥ . As a reference, we also model the stellar activity RV signals in
vobs (case R0) and in v⊥ (case R⊥) using uni-dimensional GPs with

7 Note that, as discussed in Sec. 2, small-amplitude planet signatures are
expected to be preserved in the shift-driven RVs, v⊥. Coupling a multi-
dimensional GP framework with the likelihood model of Eq. 5 will be imple-
mented in a forthcoming work.

QP and SE kernels, respectively. In all cases, the GP is jointly mod-
elled with a planet RV signature of fixed orbital period and phase,
to simulate the RV monitoring of a transiting planet (e.g. unveiled
by the PLATO space mission). Note also that, in all cases, the same
planetary signal has been injected to the data, but the GP model dif-
fers from one case to the next. As shown in Sec. 5.1, the statistical
properties of the time series vary significantly from one season to the
next. We therefore choose to perform the planet injection-recovery
tests independently on each of the three seasons defined in Tab. 2.
For each season, our input data sets contain the same amount of data
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Figure 12. Best estimates of the planet RV semi-amplitude (kest, top panel)
and jitter term (𝜎j, bottom panel) for the different cases listed in Tab. 5.
The orange dots, light blue filled circles and red triangles indicate the results
obtained for the 2015-2018, 2018-2022 and 2022-2024 season, respectively.
The dashed horizontal line on the top panel indicates the semi-amplitude of
the planet RV signature injected in the data.

points (460), spread evenly over a ∼2-yr period. The parameter space
is sampled using the procedure described in Sec. 5.1.

5.3.2 Results

The best estimates of the planet RV semi-amplitude and of the jitter
term𝜎j are given in Tab. 5 and shown in Fig. 12. The recovered values
of kest are consistent with the injected one in all cases (note that, in
all cases, the same planetary signal has been injected to the data),
but the precision of the estimate varies significantly from one case
to the next. Unsurprisingly, the 1D GP modelling of the HARPS-N
RVs performs the least well, especially when the Sun is more active,
in which case only a marginal ∼2𝜎 planet detection can be claimed.
This is due to the fact that the long-term activity evolution and the
planet signature cannot be easily separated with a simple 1D GP,
which leads to larger error bars on kest.

We find that multi-dimensional GPs give, in most cases, much
smaller error bars on kest. In particular, cases (1) and (3), where the
FWHM of the CCF and the S index are used as activity proxies of
vobs, perform best in all three seasons. These two indicators capture
well the activity signatures sensitive to the photospheric flux, and
thereby complement well the RV signals, sensitive to variations of the
flux and its first derivative. In these two cases, the multi-dimensional
GP leverages all the constraints available, which results in more
precise estimates of kest. This also leads to higher values of 𝜎j,
since the GP is now less flexible (due to the increased number of
constraints), and less likely to absorb non-activity-induced variations.

We also note that cases (2) and (4), where vobs is combined with
Vs and v∥ , perform well when the Sun is more active but yield
significantly larger error bars on kest during solar minimum. During
this period, there are fewer and smaller active regions than during
more active epochs. It is therefore more likely that the statistical
properties of the stellar activity RV signal vary significantly from one
solar rotation to the next, and are thereby more difficult to model with
a quasi-periodic GP (see Sec. 6.1). During solar minimum, neither Vs
nor v∥ bring any additional constraint on the quasi-periodic activity
RV signal and, therefore, the multi-dimensional GP modelling leads
to results similar as the 1D GP modelling of vobs.

More precise values of kest are obtained in case R⊥ than in case R0,
which just reflects the fact that activity has been partly filtered from
v⊥. However, these values are significantly less precise than those
obtained in the multi-dimensional GP framework, even when the
computation of v⊥ is bypassed (i.e. cases 1 to 4). Cases where multi-
dimensional GPs are used with v⊥ (i.e. cases 5 to 8) tend to perform
similar as their vobs counterpart (cases 1 to 4). In addition, we note
that none of the SVD components, 𝑼1, 𝑼3 and 𝑼4, outperforms v∥
in the multi-dimensional GP framework. In particular, despite their
periodic modulation, 𝑼3 and 𝑼4 do not improve the RV modelling
compared to case R0.

6 DISCUSSION AND CONCLUSIONS

In this paper, we analysed the activity-induced distortions in the
absorption lines of the Solar spectrum, intensively monitored with
HARPS-N over the last 8 years. From the DRS-processed systematic-
corrected CCFs, we constructed a dimensionally-reduced basis,
which allowed us to separate the observed RVs (vobs) into com-
plementary time series, namely v⊥ (i.e. shift-driven RVs) and v∥
(shape-driven RVs). In the first one, the variations are largely dom-
inated by Doppler shifts of the entire CCF, induced, for example,
by planets or granulation at the solar surface. In the second one, the
variations are only driven by CCF distortions and, thereby, probe the
effects of active regions whilst being independent of planet signa-
tures. When we apply this framework to the HARPS-N solar spectra,
the RMS of the observed RVs goes from 2.05 to 1.06 m s−1, hence
a decrease of about 50%. We find that planet signatures are mostly
preserved in v⊥, and that the efficiency of the activity filtering is not
affected by the temporal sampling. However, as shown in Fig. 7, v⊥
exhibits significant rotation-induced variations, suggesting that the
shift-driven RVs are still affected by stellar activity.

6.1 Evolution of the GP covariance structure

In order to better understand the nature of the rotational modulation
within vobs, v⊥ and v∥ , all time series were modelled using a GP with
quasi-periodic covariance kernel. As shown in Fig. 13, the structure
of the covariance matrix of the time series evolves significantly over
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time. The RV variations are smoother and more slowly evolving at
the start of Cycle 25 than at the end of Cycle 24, which reflects the
fact that the Sun’s active regions are larger and at higher-latitude
in the start of the magnetic cycle. We found that the quasi-periodic
RV activity signals driven by flux variations as well as the long
term cycle evolution are well captured by v∥ . On the other hand, v⊥
is still plagued by high-complexity quasi-periodic activity signals,
likely reflecting variations in the first temporal derivative of the
photospheric flux.

To visualise how the temporal evolution of the GP covariance ker-
nel affects our GP fit, we model the full HARPS-N RV time series
with a single 1D GP, using the quasi-periodic covariance kernel of
Eq. 6. The best-fitting covariance kernel, shown in dashed black line
in Fig. 13, differs significantly from the kernels obtained individ-
ually for the different seasons. The signal is now found smoother
(𝜆p ≈ 0.4) and more slowly evolving (𝜆e ≈ 26 d). On the other
hand, the uncorrelated jitter term 𝜎j is now ∼1.8 m s−1, almost three
times greater than on individual seasons. As explained in Sec. 5.3,
we expect 𝜎j to increase, since we have tripled the number of con-
straints in the fit. On the other hand, the values of 𝜎j obtained with
the multi-dimensional GP in Tab. 5 are about 0.8-1.0 m s−1, sig-
nificantly smaller than 1.8 m s−1. Moreover, such a high value can
be explained neither by super-granulation or long-term instrument
stability. We therefore conclude that, as things stand, quasi-periodic
stellar activity RV signals are better modelled by GPs on chunks
during which cycle-driven variations remain small.

If we now model the full time series of shift-driven RVs, v⊥, with
a single 1D GP, the best-fitting hyper-parameters are fully consistent
with those obtained on individual seasons, despite the variations of
PGP between 2015 and 2024. The best-fitting evolution time scale and
GP period lie in between the estimates listed in Tab. 4, and a model
with high harmonic complexity (𝜆p = 0.23 ± 0.01) is preferred. The
value of𝜎j (0.62± 0.02 m s−1) lies in between the values obtained on
individual seasons (between 0.57 and 0.72 m s−1), which indicates
that our fit is as good on the whole data set as it is on individual
seasons. This can be explained by the fact that most of the long-term
activity variations (e.g. induced by the magnetic cycle), are well
captured by v∥ and, thus, well filtered out from v⊥. Therefore, we
expect the GP covariance matrix to exhibit fewer variations in the
case of v⊥ than in the case of vobs.

To investigate what drives the evolution of the quasi-periodic co-
variance kernel in vobs, we divide the HARPS-N RVs into 270-d
chunks (i.e. 10 rotation periods), using a moving window with a
step of 100 days. After discarding chunks containing large gaps in
the data, we model each subset of data using a GP with the quasi-
periodic kernel given in Eq. 6. The best-fitting hyper-parameters are
shown in Fig. C5. The variation of the GP amplitude, which is well
described by a parabola, is unsurprisingly a good tracer of the solar
magnetic cycle. We do not observe significant variations either in
the time scale of the evolution of the GP or in the period, due to
the relatively large uncertainties over these two parameters (about
4 d and 1 d for 𝜆e and PGP, respectively). On the other hand, inverse
harmonic complexity, 𝜆p, varies significantly from one chunk to the
next. When discarding the values obtained during solar minimum,
often plagued with large uncertainties due to the weak activity sig-
nal, we find a positive correlation with the GP amplitude (Pearson
correlation coefficient of 0.7).

In order to better understand the origin of this correlation, we
compare in Fig. 14 the values of 𝜆p to the whole sunspot area ob-
served by USAF/NOAA7, averaged over each chunk outside the solar
minimum, and to the spot filling factor derived from SDO HMI obser-

Figure 13. Evolution of the covariance kernel of the stellar activity RV
signal, computed using Eq. 6 with the best-fitting hyperparameters of the GP
modelling. The thick dashed line is obtained by modelling all RVs together
and the vertical dotted line indicate the average synodic rotation period of the
Sun (27.2753 d).

Figure 14. GP inverse harmonic complexity extracted from the HARPS-N
RVs (vobs, dark blue stars) as a function of the whole sunspot area (in mil-
lionths of solar hemisphere; left-hand panel), and of the SDO spot filling
factor (right-hand panel). In each panel, we give the Pearson correlation co-
efficient 𝜌, and show the best-fitting straight line (orange dashed lines). For
comparison, we also show the inverse harmonic complexities extracted from
the shift-driven RVs (v⊥) in gray dots, with Pearson correlation coefficients
of 0.55 and 0.39 with the whole spot area and SDO spot filling factor, respec-
tively.

vations (using the method of Milbourne et al. 2019; Haywood et al.
2022; Ervin et al. 2022; Lakeland et al. 2024). Both quantities appear
to strongly correlate with 𝜆p (Pearson correlation coefficients of 0.94
and 0.82; see Fig. 14). When the spot filling factor is large, sunspots
are likely to be more evenly distributed in longitude at the stellar
surface, which results in a smoother RV signal (i.e. greater values
of 𝜆p). Conversely, for small filling factors, sunspots are more likely
to be longitudinally isolated and create sharper RV variations. We
also find that 𝜆p exhbits a weaker correlation with the filling factor
of faculae and plages (Pearson correlation coefficient of ∼0.6). This
suggests that long-term variations in 𝜆p are due more to sunspots
than to the magnetic cycle, known to be best described by the filling
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factor of faculae/plages over the course of our observations (Cretig-
nier et al. 2024). The inhibition of convective blueshift in faculae
induces an RV contribution that evolves, to the first order, as the
square of the disk-integrated photospheric flux (Aigrain et al. 2012).
Therefore, in absence of spots, the RV activity signals should not
vary less smoothly than the FWHM or the S index. On the other
hand, spot-induced activity signals, which vary as the derivative of
the photospheric flux, are characterised by a significantly higher har-
monic complexity. Therefore, despite the fact that faculae dominate
the stellar activity RV budget, spots remain the main driver of the
smoothness of the signal, probed by 𝜆p. Despite the fact that this
result has been intuited in the literature (e.g. Nicholson & Aigrain
2022), it is the first time that it is observed on data.

In contrast to vobs, no coherent variations in the statistical proper-
ties of v⊥ are observed. The GP amplitude remains roughly constant
over time, and the correlation between 𝜆p and the spot filling factor
(or whole spot area) is now much weaker (Pearson correlation coeffi-
cients of 0.55 and 0.39; see Fig. 14) is observed. This confirms that,
unlike vobs, the quasi-periodic activity signal in v⊥ can be modelled
by a single GP on time scales of several years (potentially over the
full cycle).

6.2 Impact of systematics

The analysis presented in this study was conducted on CCFs com-
puted from spectra processed by YV1, as described in Sec. 3.2. Most
of the corrected systematics are expected to impact the shape of the
CCFs and, therefore, the activity-filtering framework described in
Sec. 2.1. To quantify this impact, we repeat the analysis presented
in Sec. 4.1 with the non-YARARA-processed spectra. The spectra
selected in Sec. 3.1 are normalised and aligned using the procedure
described in Sec. 3.2, and CCFs are computed using the "Kit-Cat"
line list of Cretignier et al. (2022). Following the method described
in Sec. 2.1, we extract the time series of v∥ and v⊥, using the first 4
components in the basis projection.

We find that, whereas the RMS of vobs remains pretty similar in
the post-processed counterpart, the shift-driven RVs v⊥ (resp. shape-
driven RVs v∥ ) are now significantly more (resp. less) dispersed,
with a dispersion of 1.36 m s−1 RMS (resp. 1.52 m s−1 RMS). When
working independently on the three seasons defined in Tab. 2, we only
see a noticeable decrease in RV RMS in Season 3. Component 𝑼1
still correlates well with the FWHM of the CCF, but both time series
are dominated by 0.5- and 1-yr periodic modulations, induced by
the Earth orbital obliquity and eccentricity (Collier Cameron et al.
2019). In contrast, no more correlation between 𝑼1 and vobs, Vs
and SHK is observed. Moderate correlations (Pearson correlation
coefficients up to ∼0.6) are observed between these quantities and
higher-order components, which reflects the fact that information
has been diffused among the SVD components, due to systematics
contributing as much, if not more, to the CCF variations.

When the RV time series are modelled with a quasi-periodic 1D
GP, we find that v∥ is significantly smoother and slowly-evolving than
its YV1-processed counterpart. The fit is now poorer, with a residual
RMS twice as large. This is due to the fact that v∥ is plagued with
systematics (e.g. due the 0.5-yr and 1-yr variations in FWHM Collier
Cameron et al. 2019), which affects the GP modelling. On the other
hand, whereas no significant changes in the statistical properties of
v⊥ are observed, the values of 𝜎j, the uncorrelated jitter term, have
increased to∼1 m s−1, which means that the fit is poorer. We conclude
that our framework to correct for shape-driven RV variations works
best when systematics have been corrected beforehand, through a

dedicated post-processing technique. The latter helps to better isolate
stellar activity signals in the spectra, which can therefore be more
accurately modelled.

6.3 Activity filtering and planet recovery

By jointly modelling the stellar activity RV signal in vobs with differ-
ent activity proxies, either extracted from the input spectra (e.g. CCF
FWHM, SHK) or from our framework (i.e. v∥ ), we demonstrated that
long-period planets with small RV semi-amplitudes could be reliably
detected with a multi-dimensional GP framework (see Tab. 5). This
experiment also confirms that modelling the reduced RVs with a
one-dimensional GP will likely yield imprecise parameters for long-
period planets, whereas multi-dimensional GPs, by increasing the
number of constraints on the fitted parameters, will, in most cases,
provide a more robust treatment of long-term variations.

Further investigations are also needed to leverage all the informa-
tion available in the wavelength space (CCFs8, spectra) to extract
planet signatures in an optimal way and increase the constraints on
their parameters (following the works of, e.g., Dumusque 2018; Raj-
paul et al. 2020; Collier Cameron et al. 2021; Al Moulla et al. 2022;
de Beurs et al. 2022; Cretignier et al. 2022). In particular, methods
like Doppler Imaging (Kochukhov 2016; Luger et al. 2021; Asensio
Ramos et al. 2022; Klein et al. 2022), which model the full absorp-
tion line profile (or spectrum), thereby bypassing the computation of
RVs, might become robust complements to usual activity modelling
techniques. Finally, long-term variations of the activity properties
over the cycle (as evidenced in Fig. 13) are still hard to reproduce
by current state-of-the-art modelling tools like GPs. Defining more
physically-driven GP kernels (e.g. Hara & Delisle 2023) or allowing
some hyper-parameters to vary with time are potential avenues for
solving this problem.

Yet, even if the best-case scenarios, the RV residuals of the GP fit
exhibit RMSs greater than ∼0.5 m s−1, significantly larger than the
formal RV uncertainties of ∼0.1m s−1 for the daily-binned data. This
high dispersion is most likely attributable to the long-term instrument
stability and to the solar super-granulation. This phenomenon, whose
origin remains unclear (see Rincon & Rieutord 2018, for a review),
is expected to induce RV signals on the same order of magnitude as
our residuals (Meunier et al. 2015; Al Moulla et al. 2023). Moreover,
as we do not expect granulation signals to have obvious effects on
the shape of the spectral lines, the activity-filtering method presented
in Sec. 2.1 would not correct for them. Similarly, our GP model is
not expected to affect super-granulation signals, as it is designed to
account for rotationally-modulated activity signals which evolve on
significantly longer time scales than super-granulation. Averaging out
the RV effect of super-granulation using dedicated sampling strate-
gies, as generally done for oscillations- and granulation-induced RV
signals (Dumusque et al. 2011), is not a straightforward option here,
as it will require the star to be intensively observed on time scales
of days. As indicated in Meunier & Lagrange (2019), better under-
standing the origin of super-granulation, and developing physically-
or data-driven methods to model its RV contributions (O’Sullivan &
Aigrain 2024, see), will be an important step to detect Earth-mass
planets as part, for example, of PLATO ground-based monitoring or
dedicated RV surveys like the Terra Hunting Experiment (Hall et al.
2018). As things currently stand, super-granulation signals have to

8 Note that CCFs may not be the most accurate way of estimating line profiles
(in comparison to e.g. profiles obtained via least-squares deconvolution; see
Donati & Brown 1997; Lienhard et al. 2022).
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be treated as white noise, which is emphasized by the fact that, in
Sec. 4.2, the precision of the recovered planet semi-amplitudes im-
proves as the squared root of the number of measurements. If this
result is confirmed by dedicated studies, it would mean that RV
monitoring missions should aim at maximising the number of mea-
surements on each target (ensuring these are spaced at least 1-2 d
apart so that the super-granulation signal is uncorrelated), even at the
cost of monitoring fewer stars overall.

ACKNOWLEDGEMENTS

We warmly thank the reviewer, Dr Drake Deming, for valuable sug-
gestions which helped make this analysis clearer and more robust.
We also warmly thank A. A. John for pointing out confusing nota-
tions in early versions of the manuscript. The HARPS-N project has
been funded by the Prodex Program of the Swiss Space Office (SSO),
the Harvard University Origins of Life Initiative (HUOLI), the Scot-
tish Universities Physics Alliance (SUPA), the University of Geneva,
the Smithsonian Astrophysical Observatory (SAO), and the Italian
National Astrophysical Institute (INAF), the University of St An-
drews, Queen’s University Belfast, and the University of Edinburgh.
We thank the HARPS-N solar team and TNG staff for processing
the solar data and maintaining the solar telescope. B.K., S.A., O.B.,
H.Y. and N.K.O.S. acknowledge funding from the European Re-
search Council under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 865624, GPRV).
M.C. acknowledges the SNSF support under grant P500PT_211024.
F.R. is funded by the University of Exeter’s College of Engineering,
Maths and Physical Sciences, UK. ACC acknowledges support from
STFC consolidated grant number ST/V000861/1, and EPSRC grant
number EP/Z000181/1 towards the ERC Synergy project REVEAL.

DATA AVAILABILITY

This work makes use of the HARPS-N solar RVs, which will be
described and made available in Dumusque et al., submitted. The
SDO/HMI images are publicly available at https://sdo.gsfc.
nasa.gov/data/ and the USAF/NOAA observations are available
at http://solarcyclescience.com/index.html.

REFERENCES

Aigrain S., Foreman-Mackey D., 2022, arXiv e-prints, p. arXiv:2209.08940
Aigrain S., Pont F., Zucker S., 2012, MNRAS, 419, 3147
Al Moulla K., Dumusque X., Cretignier M., Zhao Y., Valenti J. A., 2022,

A&A, 664, A34
Al Moulla K., Dumusque X., Figueira P., Lo Curto G., Santos N. C., Wildi

F., 2023, A&A, 669, A39
Ambikasaran S., Foreman-Mackey D., Greengard L., Hogg D. W., O’Neil M.,

2015, IEEE Transactions on Pattern Analysis and Machine Intelligence,
38, 252

Angus R., Morton T., Aigrain S., Foreman-Mackey D., Rajpaul V., 2018,
MNRAS, 474, 2094

Asensio Ramos A., Díaz Baso C. J., Kochukhov O., 2022, A&A, 658, A162
Astropy Collaboration et al., 2013, A&A, 558, A33
Astropy Collaboration et al., 2018, AJ, 156, 123
Astropy Collaboration et al., 2022, ApJ, 935, 167
Barragán O., Gandolfi D., Antoniciello G., 2019, MNRAS, 482, 1017
Barragán O., Aigrain S., Rajpaul V. M., Zicher N., 2022a, MNRAS, 509, 866
Barragán O., et al., 2022b, MNRAS, 514, 1606

Batalha N. E., Lewis T., Fortney J. J., Batalha N. M., Kempton E., Lewis
N. K., Line M. R., 2019, ApJ, 885, L25

Beck J. G., 2000, Sol. Phys., 191, 47
Berdyugina S. V., 2005, Living Reviews in Solar Physics, 2, 8
Boisse I., Bonfils X., Santos N. C., 2012, A&A, 545, A109
Bouchy F., Pepe F., Queloz D., 2001, A&A, 374, 733
Bourrier V., et al., 2021, A&A, 654, A152
Cegla H. M., et al., 2018, ApJ, 866, 55
Chaplin W. J., Cegla H. M., Watson C. A., Davies G. R., Ball W. H., 2019,

AJ, 157, 163
Collier Cameron A., et al., 2019, MNRAS, 487, 1082
Collier Cameron A., et al., 2021, MNRAS, 505, 1699
Cosentino R., et al., 2012, in McLean I. S., Ramsay S. K., Takami H., eds,

Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series Vol. 8446, Ground-based and Airborne Instrumentation for As-
tronomy IV. p. 84461V, doi:10.1117/12.925738

Crass J., et al., 2021, arXiv e-prints, p. arXiv:2107.14291
Cretignier M., 2022, PhD thesis, University of Geneva, Switzerland
Cretignier M., Dumusque X., Allart R., Pepe F., Lovis C., 2020a, A&A, 633,

A76
Cretignier M., Francfort J., Dumusque X., Allart R., Pepe F., 2020b, A&A,

640, A42
Cretignier M., Dumusque X., Hara N. C., Pepe F., 2021, A&A, 653, A43
Cretignier M., Dumusque X., Pepe F., 2022, A&A, 659, A68
Cretignier M., Dumusque X., Aigrain S., Pepe F., 2023, A&A, 678, A2
Cretignier M., Pietrow A. G. M., Aigrain S., 2024, MNRAS, 527, 2940
Dalal S., Rescigno F., Cretignier M., in prep., MNRAS
Delisle J. B., Unger N., Hara N. C., Ségransan D., 2022, A&A, 659, A182
Desort M., Lagrange A. M., Galland F., Udry S., Mayor M., 2007, A&A, 473,

983
Donati J. F., Brown S. F., 1997, A&A, 326, 1135
Dumusque X., 2018, A&A, 620, A47
Dumusque X., Udry S., Lovis C., Santos N. C., Monteiro M. J. P. F. G., 2011,

A&A, 525, A140
Dumusque X., Boisse I., Santos N. C., 2014, ApJ, 796, 132
Dumusque X., et al., 2015, ApJ, 814, L21
Dumusque X., et al., 2021, A&A, 648, A103
Ervin T., et al., 2022, AJ, 163, 272
Faria J. P., et al., 2022, A&A, 658, A115
Fischer D. A., et al., 2016, PASP, 128, 066001
Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125,

306
Foukal P., 1998, ApJ, 500, 958
Gelman A., Rubin D. B., 1992, Statistical Science, 7, 457
Gelman A., Carlin J. B., Stern H. S., Rubin D. B., 2004, Bayesian Data

Analysis, 2nd ed. edn. Chapman and Hall/CRC
Gibson S. R., Howard A. W., Marcy G. W., Edelstein J., Wishnow E. H.,

Poppett C. L., 2016, in Evans C. J., Simard L., Takami H., eds, Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol.
9908, Ground-based and Airborne Instrumentation for Astronomy VI. p.
990870, doi:10.1117/12.2233334

Gomes da Silva J., Santos N. C., Bonfils X., Delfosse X., Forveille T., Udry
S., Dumusque X., Lovis C., 2012, A&A, 541, A9

Hall R. D., Thompson S. J., Handley W., Queloz D., 2018, MNRAS, 479,
2968

Hara N. C., Delisle J.-B., 2023, arXiv e-prints, p. arXiv:2304.08489
Hathaway D. H., 2010, Living Reviews in Solar Physics, 7, 1
Hatzes A. P., 1996, PASP, 108, 839
Haywood R. D., et al., 2014, MNRAS, 443, 2517
Haywood R. D., et al., 2022, ApJ, 935, 6
Hogg D. W., Bovy J., Lang D., 2010, arXiv e-prints, p. arXiv:1008.4686
Howard R., Harvey J., 1970, Sol. Phys., 12, 23
John A. A., Collier Cameron A., Wilson T. G., 2022, MNRAS, 515, 3975
John A. A., et al., 2023, MNRAS, 525, 1687
Jones D. E., Stenning D. C., Ford E. B., Wolpert R. L., Loredo T. J., Gilbertson

C., Dumusque X., 2017, arXiv e-prints, p. arXiv:1711.01318
Jurgenson C., Fischer D., McCracken T., Sawyer D., Szymkowiak A., Davis

A., Muller G., Santoro F., 2016, in Evans C. J., Simard L., Takami H., eds,

MNRAS 000, 1–19 (2024)

https://sdo.gsfc.nasa.gov/data/
https://sdo.gsfc.nasa.gov/data/
http://solarcyclescience.com/index.html
https://ui.adsabs.harvard.edu/abs/2022arXiv220908940A
http://dx.doi.org/10.1111/j.1365-2966.2011.19960.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.419.3147A
http://dx.doi.org/10.1051/0004-6361/202243276
https://ui.adsabs.harvard.edu/abs/2022A&A...664A..34A
http://dx.doi.org/10.1051/0004-6361/202244663
https://ui.adsabs.harvard.edu/abs/2023A&A...669A..39A
http://dx.doi.org/10.1109/TPAMI.2015.2448083
https://ui.adsabs.harvard.edu/abs/2015ITPAM..38..252A
http://dx.doi.org/10.1093/mnras/stx2109
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.2094A
http://dx.doi.org/10.1051/0004-6361/202142027
https://ui.adsabs.harvard.edu/abs/2022A&A...658A.162A
http://dx.doi.org/10.1051/0004-6361/201322068
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A
http://dx.doi.org/10.3847/1538-3881/aabc4f
https://ui.adsabs.harvard.edu/abs/2018AJ....156..123A
http://dx.doi.org/10.3847/1538-4357/ac7c74
https://ui.adsabs.harvard.edu/abs/2022ApJ...935..167A
http://dx.doi.org/10.1093/mnras/sty2472
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.1017B
http://dx.doi.org/10.1093/mnras/stab2889
https://ui.adsabs.harvard.edu/abs/2022MNRAS.509..866B
http://dx.doi.org/10.1093/mnras/stac638
https://ui.adsabs.harvard.edu/abs/2022MNRAS.514.1606B
http://dx.doi.org/10.3847/2041-8213/ab4909
https://ui.adsabs.harvard.edu/abs/2019ApJ...885L..25B
http://dx.doi.org/10.1023/A:1005226402796
https://ui.adsabs.harvard.edu/abs/2000SoPh..191...47B
http://dx.doi.org/10.12942/lrsp-2005-8
https://ui.adsabs.harvard.edu/abs/2005LRSP....2....8B
http://dx.doi.org/10.1051/0004-6361/201219115
https://ui.adsabs.harvard.edu/abs/2012A&A...545A.109B
http://dx.doi.org/10.1051/0004-6361:20010730
https://ui.adsabs.harvard.edu/abs/2001A&A...374..733B
http://dx.doi.org/10.1051/0004-6361/202141527
https://ui.adsabs.harvard.edu/abs/2021A&A...654A.152B
http://dx.doi.org/10.3847/1538-4357/aaddfc
https://ui.adsabs.harvard.edu/abs/2018ApJ...866...55C
http://dx.doi.org/10.3847/1538-3881/ab0c01
https://ui.adsabs.harvard.edu/abs/2019AJ....157..163C
http://dx.doi.org/10.1093/mnras/stz1215
https://ui.adsabs.harvard.edu/abs/2019MNRAS.487.1082C
http://dx.doi.org/10.1093/mnras/stab1323
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.1699C
http://dx.doi.org/10.1117/12.925738
https://ui.adsabs.harvard.edu/abs/2021arXiv210714291C
http://dx.doi.org/10.1051/0004-6361/201936548
https://ui.adsabs.harvard.edu/abs/2020A&A...633A..76C
https://ui.adsabs.harvard.edu/abs/2020A&A...633A..76C
http://dx.doi.org/10.1051/0004-6361/202037722
https://ui.adsabs.harvard.edu/abs/2020A&A...640A..42C
http://dx.doi.org/10.1051/0004-6361/202140986
https://ui.adsabs.harvard.edu/abs/2021A&A...653A..43C
http://dx.doi.org/10.1051/0004-6361/202142435
https://ui.adsabs.harvard.edu/abs/2022A&A...659A..68C
http://dx.doi.org/10.1051/0004-6361/202347232
https://ui.adsabs.harvard.edu/abs/2023A&A...678A...2C
http://dx.doi.org/10.1093/mnras/stad3292
https://ui.adsabs.harvard.edu/abs/2024MNRAS.527.2940C
http://dx.doi.org/10.1051/0004-6361/202141949
https://ui.adsabs.harvard.edu/abs/2022A&A...659A.182D
http://dx.doi.org/10.1051/0004-6361:20078144
https://ui.adsabs.harvard.edu/abs/2007A&A...473..983D
https://ui.adsabs.harvard.edu/abs/2007A&A...473..983D
https://ui.adsabs.harvard.edu/abs/1997A&A...326.1135D
http://dx.doi.org/10.1051/0004-6361/201833795
https://ui.adsabs.harvard.edu/abs/2018A&A...620A..47D
http://dx.doi.org/10.1051/0004-6361/201014097
https://ui.adsabs.harvard.edu/abs/2011A&A...525A.140D
http://dx.doi.org/10.1088/0004-637X/796/2/132
https://ui.adsabs.harvard.edu/abs/2014ApJ...796..132D
http://dx.doi.org/10.1088/2041-8205/814/2/L21
https://ui.adsabs.harvard.edu/abs/2015ApJ...814L..21D
http://dx.doi.org/10.1051/0004-6361/202039350
https://ui.adsabs.harvard.edu/abs/2021A&A...648A.103D
http://dx.doi.org/10.3847/1538-3881/ac67e6
https://ui.adsabs.harvard.edu/abs/2022AJ....163..272E
http://dx.doi.org/10.1051/0004-6361/202142337
https://ui.adsabs.harvard.edu/abs/2022A&A...658A.115F
http://dx.doi.org/10.1088/1538-3873/128/964/066001
https://ui.adsabs.harvard.edu/abs/2016PASP..128f6001F
http://dx.doi.org/10.1086/670067
https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F
https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F
http://dx.doi.org/10.1086/305764
https://ui.adsabs.harvard.edu/abs/1998ApJ...500..958F
http://dx.doi.org/10.1214/ss/1177011136
https://ui.adsabs.harvard.edu/abs/1992StaSc...7..457G
http://dx.doi.org/10.1117/12.2233334
http://dx.doi.org/10.1051/0004-6361/201118598
https://ui.adsabs.harvard.edu/abs/2012A&A...541A...9G
http://dx.doi.org/10.1093/mnras/sty1464
https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.2968H
https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.2968H
http://dx.doi.org/10.48550/arXiv.2304.08489
https://ui.adsabs.harvard.edu/abs/2023arXiv230408489H
http://dx.doi.org/10.12942/lrsp-2010-1
https://ui.adsabs.harvard.edu/abs/2010LRSP....7....1H
http://dx.doi.org/10.1086/133805
https://ui.adsabs.harvard.edu/abs/1996PASP..108..839H
http://dx.doi.org/10.1093/mnras/stu1320
https://ui.adsabs.harvard.edu/abs/2014MNRAS.443.2517H
http://dx.doi.org/10.3847/1538-4357/ac7c12
https://ui.adsabs.harvard.edu/abs/2022ApJ...935....6H
https://ui.adsabs.harvard.edu/abs/2010arXiv1008.4686H
http://dx.doi.org/10.1007/BF02276562
https://ui.adsabs.harvard.edu/abs/1970SoPh...12...23H
http://dx.doi.org/10.1093/mnras/stac1814
https://ui.adsabs.harvard.edu/abs/2022MNRAS.515.3975J
http://dx.doi.org/10.1093/mnras/stad2381
https://ui.adsabs.harvard.edu/abs/2023MNRAS.525.1687J
https://ui.adsabs.harvard.edu/abs/2017arXiv171101318J


Eight-year study of solar activity 17

Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series Vol. 9908, Ground-based and Airborne Instrumentation for As-
tronomy VI. p. 99086T (arXiv:1606.04413), doi:10.1117/12.2233002

Klein B., Donati J. F., 2019, MNRAS, 488, 5114
Klein B., et al., 2022, MNRAS, 512, 5067
Klein B., et al., 2024, MNRAS, 527, 544
Kochukhov O., 2016, in Rozelot J.-P., Neiner C., eds, , Vol. 914, Lecture

Notes in Physics, Berlin Springer Verlag. p. 177, doi:10.1007/978-3-319-
24151-7_9

Lakeland B. S., et al., 2024, MNRAS, 527, 7681
Leighton R. B., 1964, ApJ, 140, 1547
Lienhard F., Mortier A., Buchhave L., Collier Cameron A., López-Morales

M., Sozzetti A., Watson C. A., Cosentino R., 2022, MNRAS, 513, 5328
Lienhard F., Mortier A., Cegla H. M., Cameron A. C., Klein B., Watson C. A.,

2023, MNRAS, 522, 5862
Lovis C., et al., 2011, arXiv e-prints, p. arXiv:1107.5325
Luger R., Bedell M., Foreman-Mackey D., Crossfield I. J. M., Zhao L. L.,

Hogg D. W., 2021, arXiv e-prints, p. arXiv:2110.06271
Malavolta L., Lovis C., Pepe F., Sneden C., Udry S., 2017, MNRAS, 469,

3965
Mayor M., Queloz D., 1995, Nature, 378, 355
Meunier N., 2021, arXiv e-prints, p. arXiv:2104.06072
Meunier N., Lagrange A. M., 2019, A&A, 625, L6
Meunier N., Lagrange A. M., 2020, A&A, 638, A54
Meunier N., Desort M., Lagrange A. M., 2010, A&A, 512, A39
Meunier N., Lagrange A. M., Borgniet S., Rieutord M., 2015, A&A, 583,

A118
Meunier N., Pous R., Sulis S., Mary D., Lagrange A. M., 2023, A&A, 676,

A82
Milbourne T. W., et al., 2019, ApJ, 874, 107
Mordasini C., Alibert Y., Georgy C., Dittkrist K. M., Klahr H., Henning T.,

2012, A&A, 547, A112
Nicholson B. A., Aigrain S., 2022, MNRAS, 515, 5251
Noyes R. W., Hartmann L. W., Baliunas S. L., Duncan D. K., Vaughan A. H.,

1984, ApJ, 279, 763
O’Sullivan N. K., Aigrain S., 2024, arXiv e-prints, p. arXiv:2404.11662
Pepe F., et al., 2021, A&A, 645, A96
Pesnell W. D., Thompson B. J., Chamberlin P. C., 2012, Sol. Phys., 275, 3
Phillips D. F., et al., 2016, in Navarro R., Burge J. H., eds, Society of Photo-

Optical Instrumentation Engineers (SPIE) Conference Series Vol. 9912,
Advances in Optical and Mechanical Technologies for Telescopes and
Instrumentation II. p. 99126Z, doi:10.1117/12.2232452

Queloz D., et al., 2001, A&A, 379, 279
Rajpaul V., Aigrain S., Osborne M. A., Reece S., Roberts S., 2015, MNRAS,

452, 2269
Rajpaul V. M., Aigrain S., Buchhave L. A., 2020, MNRAS, 492, 3960
Rasmussen C. E., Williams C. K. I., 2006, Gaussian Processes for Machine

Learning. MIT Press
Rincon F., Rieutord M., 2018, Living Reviews in Solar Physics, 15, 6
Saar S. H., Donahue R. A., 1997, ApJ, 485, 319
Schwab C., et al., 2018, in Evans C. J., Simard L., Takami H., eds, Society of

Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol.
10702, Ground-based and Airborne Instrumentation for Astronomy VII.
p. 1070271, doi:10.1117/12.2314420

Snodgrass H. B., Ulrich R. K., 1990, ApJ, 351, 309
Stalport M., et al., 2023, A&A, 678, A90
Thompson S. J., et al., 2016, in Evans C. J., Simard L., Takami H., eds, Society

of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
Vol. 9908, Ground-based and Airborne Instrumentation for Astronomy
VI. p. 99086F (arXiv:1608.04611), doi:10.1117/12.2232111

Thompson A. P. G., et al., 2020, MNRAS, 494, 4279
Wang Y. M., Nash A. G., Sheeley N. R. J., 1989, ApJ, 347, 529
Wilson T. G., et al., 2022, MNRAS, 511, 1043
Zechmeister M., Kürster M., 2009, A&A, 496, 577
Zhao L. L., et al., 2022, AJ, 163, 171
de Beurs Z. L., et al., 2022, AJ, 164, 49
de Beurs Z. L., et al., 2024, MNRAS, 529, 1047

APPENDIX A: YARARA UPGRADE

The YARARA pipeline was initially described in Cretignier et al.
(2021) as developed for the HARPS spectrograph. Its adaptation
for HARPS-N was straighforward given that both instruments are
very similar, but peculiarity of the HARPS-N instrument pushed
us to slightly modify one of the post-processing recipe. Indeed, the
YV1 pipeline was subsenquently improved to better disentangle the
change of PSF from stellar activity (see Appendix C in Stalport
et al. (2023)). We briefly summarise the method used to measure
the variation of the PSF time-series. We assumed that instrumental
changes were mainly dominated by symmetrical variations of the
line profile, which is valid since any asymmetric change of the line
profile would also introduce an RV offset that is not observed. The
method therefore consists in (1) deriving CCFs from the spectra,
(2) correcting the position of their centroid by the RV value obtained
from a Gaussian fit, (3) subtracting the median CCF from each
RV-corrected CCF, (4) linearly detrending the median-subtracted
CCFs from the 𝑆𝐻𝐾 index9, and (5) transforming the residuals CCFs
ΔCCF(𝑣𝑖 , 𝑡) into a merged symmetric versus asymmetric Δ profiles
Δ = [ΔCCFsym (𝑣𝑖 , 𝑡), ΔCCFasym (𝑣𝑖 , 𝑡)]. A PCA is then performed
on the transformed residual CCFs and only the components that are
significantly symmetric (with a parameter10 𝑅 > 3) were selected.
Such a method can be understood as an alternative version of the
SCALPELS algorithm (Collier Cameron et al. 2021) using ACFs. The
reason for the usage of the 𝑆𝐻𝐾 was the almost perfect relation be-
tween this index and the filling factor of active regions (Cretignier
et al. 2024) and the relative unsensitivity of these lines to instrumen-
tal systematics that mainly affect sharps photospheric lines, but less
strongly deep and broad chromospheric lines.

The time-domain scores of those components are then used as
linear predictors to decorrelate the residual spectra time-series from
the instrumental PSF change as explained in Cretignier et al. (2021)
where we already demonstrated that the method was preserving plan-
etary signals. When we upgraded the recipe in Stalport et al. (2023),
the change of the cryostat was at this time really recent and we did
not had enough perspective to understand its effect, but the solar data
revealed new properties about the instrumental intervention.

The previous recipe was mainly motivated to correct the large in-
strumental PSF defocus visible in 2012 at the beginning of the instru-
ment’s lifetime (before the installation of the solar telescope). Ater
the change of the cryostat, we observed that the previous developped
recipe was unperfect. Indeed, the change of the PSF was previously
obtained with a white CCF using the full wavelength bandpass be-
tween 3900 and 6835 Å, since at first order, all the stellar lines behave
in a similar way on the spectrum. However, investigations on the Sun
show that some instrumental effects are also very chromatic. As an
example, the warm-up of the detector mainly affect the blue part of
the spectrum since the contrast of the ghosts is larger in the blue
spectral range. Also, the change of the cryostat introduced a larger
signal in the green and blue part of the spectrum compared to the red,
but the reason for this signature is yet unknown. We therefore modi-
fied the recipe developed in Stalport et al. (2023) by computing three
colours CCFs (blue, green and red) splited evenly in wavelength and
used the obtained vector to decorrelate the spectra residuals time-
series as explained in YARARA Cretignier et al. (2021). The reason
for three colour is mainly justified by the usual trade-off sensitivity
versus SNR. We displayed the same figure as the one obtained for

9 Where the linears coefficients are determined on the high-pass filter of the
signals.
10 see Stalport et al. (2023) for the precise definition of R
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Figure A1. PCA decomposition of the transformed CCFs residuals time-series. The figure is identical to the Fig.C.2 obtained for HD4628 in Stalport et al.
(2023) excepted that instead of a CCF obtained with all the stellar lines, we represented here the "blue CCF" (𝜆 < 4877 Å) analysis. Left: PCA components
obtained for the CCF residuals (see main text). The component decorrelate by the 𝑆HK is also shown in black. The vertical dotted line split the symmetric (left)
from antisymmetric (right) profiles deformations. The parameter of symmetry 𝑅 is shown on the left of the profiles and is in bold for significant symmetric
profile (𝑅 > 3). Right : Score of the PCA components and corresponding periodograms in days. The time-series coefficient used to correct for the change of the
PSF are given by the symmetric components deformation (blue and orange components).

HD4628 in Stalport et al. (2023) for the solar observations in Fig.A1
and Fig.A2 with blue and green CCFs respectively.

The first PCA component of blue and green CCFs reveal the clear
signature of the change of v sin i and of the cyostat change around
BJD=2,459,491. The second PCA component in the blue contains
extra component such as the warm-up at BJD=2,458,629, while the
green CCFs contains a long trend with the cryostat offset. This long
trend may be correlated with the long decrease in SNR due to ageing
of the solar dome. The third PCA component is mainly an anti-
symmetric variation (therefore not used) and clearly show the stellar
activity power at Prot/2.

APPENDIX B: PLANET DETECTION MAPS

Fig. B1 shows the detection rates of the planets injected in the
HARPS-N solar CCFs without and with activity filtering (see
Sec. 4.2), as a function of the planet RV semi-amplitude Kinj and
orbital period Porb. Planets considered to be detected if the recovered
RV semi-amplitude differs by less than 1𝜎 from Kinj and differs from
0 by at least 3𝜎. As outlined in Sec. 4.2, the activity-filtering frame-
work increases the sensitivity to planets with low semi-amplitude

(typically lower than 0.4 m s−1) and larger orbital period (typically
greater than ∼100 d). We note a very light decrease of the detec-
tion rate of short-period higher-amplitude planet signatures after
activity filtering. This can be understood as uncertainties on the RV
semi-amplitude are significantly smaller when estimated from the
activity-filtered RVs than from the raw RVs (see Fig. 9). Note that
the best estimates of the RV semi-amplitudes of the planets missed
within ths (Kinj,Porb) space still lie within 2𝜎 of the injected RV
semi-amplitude.

APPENDIX C: GAUSSIAN PROCESS MODELLING

In this appendix, we give additional details of the GP modelling of
spectroscopic activity indicators, namely the HARPS-N solar RVs
(vobs), the time series of v⊥ and v∥ , computed in Sec. 4.1, and usual
activity proxies (i.e. FWHM, Vs and SHK). In Fig. C1, Fig. C2
and C3, we show the quasi-periodic 1D GP fit to the different time
series in Season 1 (2015-2018), 2 (2018-2021.8) and 3 (2021.8-
2024), respectively. The posterior densities of the hyper-parameters
of the 1D GP fit to the time series of eigenvectors 𝑼1, 𝑼3 and 𝑼4,
extracted in Sec. 4.1, are shown for all three seasons in Fig. C4. We

MNRAS 000, 1–19 (2024)



Eight-year study of solar activity 19

Figure A2. Same as Fig.A1 for the green CCF (4877 Å< 𝜆 < 5856 Å). The jump corresponding for the warm-up of the detector is not visible around BJD=58,629
on contrary to the blue CCF. This indicates that warm-up signatures are mainly visible in the blue part, coherent with the higher contrast of the ghosts.

visually see the change in the solar activity regime from one season
to the next. Activity-induced fluctuations are most clearly in the start
of cycle 25 (Season 3, Fig. C3), when the Sun is more active. In
this regime, rotationally-modulated signals are present in all activity
proxies except v⊥, where they have been filtered out. These activity-
induced fluctuations appear significantly faster-evolving at the end of
cycle 24 (Season 1, Fig. C1), which is consistent with the lower GP
evolution time scale and inverse harmonic complexity of this season
(i.e. 𝜆e and 𝜆p from Tab. 4). The signal is the most complex over
the solar minimum (Season 2, Fig. C2). In this case, the GP fit is
controlled by the few activity-induced fluctuations, visible notably in
the end of the season, which explains why the best-fit GP parameters
in Tab. 4 are similar to those obtained in Season 3. Outside these
activity-dominated regions, we note that the FWHM and SHK index
are mostly flat, whereas the RVs still exhibit fluctuations of about
1 m s−1 peak-to-peak, most likely due to an interplay between activity
residuals, granulation and instrument stability.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure A3. Same as Fig.A1 for the red CCF (𝜆 > 5856 Å). The jump corresponding for the warm-up of the detector is not visible, neither the cryostat change.

Figure B1. Planet detectability maps, as a function of the RV semi-amplitude and orbital period, recovered from the HARPS-N solar RVs without activity
filtering (left-hand panel) and using the activity-filtering framework of Sec. 2.1. In each panel, the color code depicts the planet detection rate (darkblue / yellow
indicating detection rates close to 0 / 100%). The numbers within each cell indicate the detection rate in percent.
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Figure C1. Best-fitting GP prediction to different time series of activity indicators extracted from HARPS-N Solar spectra, during Season 1 (i.e. 2015 to 2018,
see Tab. 2). In each panel, the data points with formal 1𝜎 error bars are shown in black dots, and the best-fitting GP prediction (resp. 1𝜎 error bands) is indicated
by the magenta solid line (resp. shaded bands).
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Figure C2. Same as Fig. C1, for the activity indicators observed during Season 2 (i.e. during solar minimum; see Tab. 2).
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Figure C3. Same as Fig. C1, for the activity indicators observed during Season 3 (i.e. start of cycle 25; see Tab. 2).
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Figure C4. Uni-dimensional posterior distributions of the GP evolution time scale (left-hand column), inverse-harmonic complexity (middle column) and period
(right-hand column) obtained by modelling the HARPS-N solar RVs (filled grey histograms), v⊥ (filled yellow histograms), and 𝑼1, 𝑼3 and 𝑼4 (thin, medium
thick and thick gray lines).
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Figure C5. Distribution of the best-fitting GP hyperprameters obtained by
modelling 270-d chunks of HARPS-N solar RV. The dotted blue line in the
top panel shows the best-fitting parabola to the GP amplitudes. The three
seasons defined in Tab. 2 (i.e. end of Cycle 24, solar minimum and start of
Cycle 25) are delimited by the vertical dashed lines.
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